statsmodels.stats.multitest.local_fdr¶
-
statsmodels.stats.multitest.local_fdr(zscores, null_proportion=
1.0
, null_pdf=None
, deg=7
, nbins=30
, alpha=0
)[source]¶ Calculate local FDR values for a list of Z-scores.
- Parameters:¶
- zscoresarray_like
A vector of Z-scores
- null_proportion
float
The assumed proportion of true null hypotheses
- null_pdf
function
mapping
reals
to
positive
reals
The density of null Z-scores; if None, use standard normal
- deg
int
The maximum exponent in the polynomial expansion of the density of non-null Z-scores
- nbins
int
The number of bins for estimating the marginal density of Z-scores.
- alpha
float
Use Poisson ridge regression with parameter alpha to estimate the density of non-null Z-scores.
- Returns:¶
- fdrarray_like
A vector of FDR values
References
B Efron (2008). Microarrays, Empirical Bayes, and the Two-Groups Model. Statistical Science 23:1, 1-22.
Examples
Basic use (the null Z-scores are taken to be standard normal):
>>> from statsmodels.stats.multitest import local_fdr >>> import numpy as np >>> zscores = np.random.randn(30) >>> fdr = local_fdr(zscores)
Use a Gaussian null distribution estimated from the data:
>>> null = EmpiricalNull(zscores) >>> fdr = local_fdr(zscores, null_pdf=null.pdf)
Last update:
Jan 20, 2025