statsmodels.tsa.statespace.simulation_smoother.SimulationSmoothResults.simulate¶
-
SimulationSmoothResults.simulate(simulation_output=
-1
, disturbance_variates=None
, measurement_disturbance_variates=None
, state_disturbance_variates=None
, initial_state_variates=None
, pretransformed=None
, pretransformed_measurement_disturbance_variates=None
, pretransformed_state_disturbance_variates=None
, pretransformed_initial_state_variates=False
, random_state=None
)[source]¶ Perform simulation smoothing
Does not return anything, but populates the object’s simulated_* attributes, as specified by simulation output.
- Parameters:¶
- simulation_output
int
,optional
Bitmask controlling simulation output. Default is to use the simulation output defined in object initialization.
- measurement_disturbance_variatesarray_like,
optional
If specified, these are the shocks to the measurement equation, \(\varepsilon_t\). If unspecified, these are automatically generated using a pseudo-random number generator. If specified, must be shaped nsimulations x k_endog, where k_endog is the same as in the state space model.
- state_disturbance_variatesarray_like,
optional
If specified, these are the shocks to the state equation, \(\eta_t\). If unspecified, these are automatically generated using a pseudo-random number generator. If specified, must be shaped nsimulations x k_posdef where k_posdef is the same as in the state space model.
- initial_state_variatesarray_like,
optional
If specified, this is the state vector at time zero, which should be shaped (k_states x 1), where k_states is the same as in the state space model. If unspecified, but the model has been initialized, then that initialization is used.
- initial_state_variates
array_likes
,optional
Random values to use as initial state variates. Usually only specified if results are to be replicated (e.g. to enforce a seed) or for testing. If not specified, random variates are drawn.
- pretransformed_measurement_disturbance_variatesbool,
optional
If measurement_disturbance_variates is provided, this flag indicates whether it should be directly used as the shocks. If False, then it is assumed to contain draws from the standard Normal distribution that must be transformed using the obs_cov covariance matrix. Default is False.
- pretransformed_state_disturbance_variatesbool,
optional
If state_disturbance_variates is provided, this flag indicates whether it should be directly used as the shocks. If False, then it is assumed to contain draws from the standard Normal distribution that must be transformed using the state_cov covariance matrix. Default is False.
- pretransformed_initial_state_variatesbool,
optional
If initial_state_variates is provided, this flag indicates whether it should be directly used as the initial_state. If False, then it is assumed to contain draws from the standard Normal distribution that must be transformed using the initial_state_cov covariance matrix. Default is False.
- random_state{
None
,int
,Generator
,RandomState
},optional
If seed is None (or np.random), the numpy.random.RandomState singleton is used. If seed is an int, a new
numpy.random.RandomState
instance is used, seeded with seed. If seed is already anumpy.random.Generator
ornumpy.random.RandomState
instance then that instance is used.- disturbance_variatesbool,
optional
Deprecated, please use pretransformed_measurement_shocks and pretransformed_state_shocks instead.
Deprecated since version 0.14.0: Use
measurement_disturbance_variates
andstate_disturbance_variates
as replacements.- pretransformedbool,
optional
Deprecated, please use pretransformed_measurement_shocks and pretransformed_state_shocks instead.
Deprecated since version 0.14.0: Use
pretransformed_measurement_disturbance_variates
andpretransformed_state_disturbance_variates
as replacements.
- simulation_output