Source code for statsmodels.base.distributed_estimation
from statsmodels.base.elastic_net import RegularizedResults
from statsmodels.stats.regularized_covariance import _calc_nodewise_row, \
_calc_nodewise_weight, _calc_approx_inv_cov
from statsmodels.base.model import LikelihoodModelResults
from statsmodels.regression.linear_model import OLS
import numpy as np
"""
Distributed estimation routines. Currently, we support several
methods of distribution
- sequential, has no extra dependencies
- parallel
- with joblib
A variety of backends are supported through joblib
This allows for different types of clusters besides
standard local clusters. Some examples of
backends supported by joblib are
- dask.distributed
- yarn
- ipyparallel
The framework is very general and allows for a variety of
estimation methods. Currently, these include
- debiased regularized estimation
- simple coefficient averaging (naive)
- regularized
- unregularized
Currently, the default is regularized estimation with debiasing
which follows the methods outlined in
Jason D. Lee, Qiang Liu, Yuekai Sun and Jonathan E. Taylor.
"Communication-Efficient Sparse Regression: A One-Shot Approach."
arXiv:1503.04337. 2015. https://arxiv.org/abs/1503.04337.
There are several variables that are taken from the source paper
for which the interpretation may not be directly clear from the
code, these are mostly used to help form the estimate of the
approximate inverse covariance matrix as part of the
debiasing procedure.
wexog
A weighted design matrix used to perform the node-wise
regression procedure.
nodewise_row
nodewise_row is produced as part of the node-wise regression
procedure used to produce the approximate inverse covariance
matrix. One is produced for each variable using the
LASSO.
nodewise_weight
nodewise_weight is produced using the gamma_hat values for
each p to produce weights to reweight the gamma_hat values which
are ultimately used to form approx_inv_cov.
approx_inv_cov
This is the estimate of the approximate inverse covariance
matrix. This is used to debiase the coefficient average
along with the average gradient. For the OLS case,
approx_inv_cov is an approximation for
n * (X^T X)^{-1}
formed by node-wise regression.
"""
def _est_regularized_naive(mod, pnum, partitions, fit_kwds=None):
"""estimates the regularized fitted parameters.
Parameters
----------
mod : statsmodels model class instance
The model for the current partition.
pnum : scalar
Index of current partition
partitions : scalar
Total number of partitions
fit_kwds : dict-like or None
Keyword arguments to be given to fit_regularized
Returns
-------
An array of the parameters for the regularized fit
"""
if fit_kwds is None:
raise ValueError("_est_regularized_naive currently " +
"requires that fit_kwds not be None.")
return mod.fit_regularized(**fit_kwds).params
def _est_unregularized_naive(mod, pnum, partitions, fit_kwds=None):
"""estimates the unregularized fitted parameters.
Parameters
----------
mod : statsmodels model class instance
The model for the current partition.
pnum : scalar
Index of current partition
partitions : scalar
Total number of partitions
fit_kwds : dict-like or None
Keyword arguments to be given to fit
Returns
-------
An array of the parameters for the fit
"""
if fit_kwds is None:
raise ValueError("_est_unregularized_naive currently " +
"requires that fit_kwds not be None.")
return mod.fit(**fit_kwds).params
def _join_naive(params_l, threshold=0):
"""joins the results from each run of _est_<type>_naive
and returns the mean estimate of the coefficients
Parameters
----------
params_l : list
A list of arrays of coefficients.
threshold : scalar
The threshold at which the coefficients will be cut.
"""
p = len(params_l[0])
partitions = len(params_l)
params_mn = np.zeros(p)
for params in params_l:
params_mn += params
params_mn /= partitions
params_mn[np.abs(params_mn) < threshold] = 0
return params_mn
def _calc_grad(mod, params, alpha, L1_wt, score_kwds):
"""calculates the log-likelihood gradient for the debiasing
Parameters
----------
mod : statsmodels model class instance
The model for the current partition.
params : array_like
The estimated coefficients for the current partition.
alpha : scalar or array_like
The penalty weight. If a scalar, the same penalty weight
applies to all variables in the model. If a vector, it
must have the same length as `params`, and contains a
penalty weight for each coefficient.
L1_wt : scalar
The fraction of the penalty given to the L1 penalty term.
Must be between 0 and 1 (inclusive). If 0, the fit is
a ridge fit, if 1 it is a lasso fit.
score_kwds : dict-like or None
Keyword arguments for the score function.
Returns
-------
An array-like object of the same dimension as params
Notes
-----
In general:
gradient l_k(params)
where k corresponds to the index of the partition
For OLS:
X^T(y - X^T params)
"""
grad = -mod.score(np.asarray(params), **score_kwds)
grad += alpha * (1 - L1_wt)
return grad
def _calc_wdesign_mat(mod, params, hess_kwds):
"""calculates the weighted design matrix necessary to generate
the approximate inverse covariance matrix
Parameters
----------
mod : statsmodels model class instance
The model for the current partition.
params : array_like
The estimated coefficients for the current partition.
hess_kwds : dict-like or None
Keyword arguments for the hessian function.
Returns
-------
An array-like object, updated design matrix, same dimension
as mod.exog
"""
rhess = np.sqrt(mod.hessian_factor(np.asarray(params), **hess_kwds))
return rhess[:, None] * mod.exog
def _est_regularized_debiased(mod, mnum, partitions, fit_kwds=None,
score_kwds=None, hess_kwds=None):
"""estimates the regularized fitted parameters, is the default
estimation_method for class DistributedModel.
Parameters
----------
mod : statsmodels model class instance
The model for the current partition.
mnum : scalar
Index of current partition.
partitions : scalar
Total number of partitions.
fit_kwds : dict-like or None
Keyword arguments to be given to fit_regularized
score_kwds : dict-like or None
Keyword arguments for the score function.
hess_kwds : dict-like or None
Keyword arguments for the Hessian function.
Returns
-------
A tuple of parameters for regularized fit
An array-like object of the fitted parameters, params
An array-like object for the gradient
A list of array like objects for nodewise_row
A list of array like objects for nodewise_weight
"""
score_kwds = {} if score_kwds is None else score_kwds
hess_kwds = {} if hess_kwds is None else hess_kwds
if fit_kwds is None:
raise ValueError("_est_regularized_debiased currently " +
"requires that fit_kwds not be None.")
else:
alpha = fit_kwds["alpha"]
if "L1_wt" in fit_kwds:
L1_wt = fit_kwds["L1_wt"]
else:
L1_wt = 1
nobs, p = mod.exog.shape
p_part = int(np.ceil((1. * p) / partitions))
params = mod.fit_regularized(**fit_kwds).params
grad = _calc_grad(mod, params, alpha, L1_wt, score_kwds) / nobs
wexog = _calc_wdesign_mat(mod, params, hess_kwds)
nodewise_row_l = []
nodewise_weight_l = []
for idx in range(mnum * p_part, min((mnum + 1) * p_part, p)):
nodewise_row = _calc_nodewise_row(wexog, idx, alpha)
nodewise_row_l.append(nodewise_row)
nodewise_weight = _calc_nodewise_weight(wexog, nodewise_row, idx,
alpha)
nodewise_weight_l.append(nodewise_weight)
return params, grad, nodewise_row_l, nodewise_weight_l
def _join_debiased(results_l, threshold=0):
"""joins the results from each run of _est_regularized_debiased
and returns the debiased estimate of the coefficients
Parameters
----------
results_l : list
A list of tuples each one containing the params, grad,
nodewise_row and nodewise_weight values for each partition.
threshold : scalar
The threshold at which the coefficients will be cut.
"""
p = len(results_l[0][0])
partitions = len(results_l)
params_mn = np.zeros(p)
grad_mn = np.zeros(p)
nodewise_row_l = []
nodewise_weight_l = []
for r in results_l:
params_mn += r[0]
grad_mn += r[1]
nodewise_row_l.extend(r[2])
nodewise_weight_l.extend(r[3])
nodewise_row_l = np.array(nodewise_row_l)
nodewise_weight_l = np.array(nodewise_weight_l)
params_mn /= partitions
grad_mn *= -1. / partitions
approx_inv_cov = _calc_approx_inv_cov(nodewise_row_l, nodewise_weight_l)
debiased_params = params_mn + approx_inv_cov.dot(grad_mn)
debiased_params[np.abs(debiased_params) < threshold] = 0
return debiased_params
def _helper_fit_partition(self, pnum, endog, exog, fit_kwds,
init_kwds_e={}):
"""handles the model fitting for each machine. NOTE: this
is primarily handled outside of DistributedModel because
joblib cannot handle class methods.
Parameters
----------
self : DistributedModel class instance
An instance of DistributedModel.
pnum : scalar
index of current partition.
endog : array_like
endogenous data for current partition.
exog : array_like
exogenous data for current partition.
fit_kwds : dict-like
Keywords needed for the model fitting.
init_kwds_e : dict-like
Additional init_kwds to add for each partition.
Returns
-------
estimation_method result. For the default,
_est_regularized_debiased, a tuple.
"""
temp_init_kwds = self.init_kwds.copy()
temp_init_kwds.update(init_kwds_e)
model = self.model_class(endog, exog, **temp_init_kwds)
results = self.estimation_method(model, pnum, self.partitions,
fit_kwds=fit_kwds,
**self.estimation_kwds)
return results
[docs]
class DistributedModel:
__doc__ = """
Distributed model class
Parameters
----------
partitions : scalar
The number of partitions that the data will be split into.
model_class : statsmodels model class
The model class which will be used for estimation. If None
this defaults to OLS.
init_kwds : dict-like or None
Keywords needed for initializing the model, in addition to
endog and exog.
init_kwds_generator : generator or None
Additional keyword generator that produces model init_kwds
that may vary based on data partition. The current usecase
is for WLS and GLS
estimation_method : function or None
The method that performs the estimation for each partition.
If None this defaults to _est_regularized_debiased.
estimation_kwds : dict-like or None
Keywords to be passed to estimation_method.
join_method : function or None
The method used to recombine the results from each partition.
If None this defaults to _join_debiased.
join_kwds : dict-like or None
Keywords to be passed to join_method.
results_class : results class or None
The class of results that should be returned. If None this
defaults to RegularizedResults.
results_kwds : dict-like or None
Keywords to be passed to results class.
Attributes
----------
partitions : scalar
See Parameters.
model_class : statsmodels model class
See Parameters.
init_kwds : dict-like
See Parameters.
init_kwds_generator : generator or None
See Parameters.
estimation_method : function
See Parameters.
estimation_kwds : dict-like
See Parameters.
join_method : function
See Parameters.
join_kwds : dict-like
See Parameters.
results_class : results class
See Parameters.
results_kwds : dict-like
See Parameters.
Notes
-----
Examples
--------
"""
def __init__(self, partitions, model_class=None,
init_kwds=None, estimation_method=None,
estimation_kwds=None, join_method=None, join_kwds=None,
results_class=None, results_kwds=None):
self.partitions = partitions
if model_class is None:
self.model_class = OLS
else:
self.model_class = model_class
if init_kwds is None:
self.init_kwds = {}
else:
self.init_kwds = init_kwds
if estimation_method is None:
self.estimation_method = _est_regularized_debiased
else:
self.estimation_method = estimation_method
if estimation_kwds is None:
self.estimation_kwds = {}
else:
self.estimation_kwds = estimation_kwds
if join_method is None:
self.join_method = _join_debiased
else:
self.join_method = join_method
if join_kwds is None:
self.join_kwds = {}
else:
self.join_kwds = join_kwds
if results_class is None:
self.results_class = RegularizedResults
else:
self.results_class = results_class
if results_kwds is None:
self.results_kwds = {}
else:
self.results_kwds = results_kwds
[docs]
def fit(self, data_generator, fit_kwds=None, parallel_method="sequential",
parallel_backend=None, init_kwds_generator=None):
"""Performs the distributed estimation using the corresponding
DistributedModel
Parameters
----------
data_generator : generator
A generator that produces a sequence of tuples where the first
element in the tuple corresponds to an endog array and the
element corresponds to an exog array.
fit_kwds : dict-like or None
Keywords needed for the model fitting.
parallel_method : str
type of distributed estimation to be used, currently
"sequential", "joblib" and "dask" are supported.
parallel_backend : None or joblib parallel_backend object
used to allow support for more complicated backends,
ex: dask.distributed
init_kwds_generator : generator or None
Additional keyword generator that produces model init_kwds
that may vary based on data partition. The current usecase
is for WLS and GLS
Returns
-------
join_method result. For the default, _join_debiased, it returns a
p length array.
"""
if fit_kwds is None:
fit_kwds = {}
if parallel_method == "sequential":
results_l = self.fit_sequential(data_generator, fit_kwds,
init_kwds_generator)
elif parallel_method == "joblib":
results_l = self.fit_joblib(data_generator, fit_kwds,
parallel_backend,
init_kwds_generator)
else:
raise ValueError("parallel_method: %s is currently not supported"
% parallel_method)
params = self.join_method(results_l, **self.join_kwds)
# NOTE that currently, the dummy result model that is initialized
# here does not use any init_kwds from the init_kwds_generator event
# if it is provided. It is possible to imagine an edge case where
# this might be a problem but given that the results model instance
# does not correspond to any data partition this seems reasonable.
res_mod = self.model_class([0], [0], **self.init_kwds)
return self.results_class(res_mod, params, **self.results_kwds)
[docs]
def fit_sequential(self, data_generator, fit_kwds,
init_kwds_generator=None):
"""Sequentially performs the distributed estimation using
the corresponding DistributedModel
Parameters
----------
data_generator : generator
A generator that produces a sequence of tuples where the first
element in the tuple corresponds to an endog array and the
element corresponds to an exog array.
fit_kwds : dict-like
Keywords needed for the model fitting.
init_kwds_generator : generator or None
Additional keyword generator that produces model init_kwds
that may vary based on data partition. The current usecase
is for WLS and GLS
Returns
-------
join_method result. For the default, _join_debiased, it returns a
p length array.
"""
results_l = []
if init_kwds_generator is None:
for pnum, (endog, exog) in enumerate(data_generator):
results = _helper_fit_partition(self, pnum, endog, exog,
fit_kwds)
results_l.append(results)
else:
tup_gen = enumerate(zip(data_generator,
init_kwds_generator))
for pnum, ((endog, exog), init_kwds_e) in tup_gen:
results = _helper_fit_partition(self, pnum, endog, exog,
fit_kwds, init_kwds_e)
results_l.append(results)
return results_l
[docs]
def fit_joblib(self, data_generator, fit_kwds, parallel_backend,
init_kwds_generator=None):
"""Performs the distributed estimation in parallel using joblib
Parameters
----------
data_generator : generator
A generator that produces a sequence of tuples where the first
element in the tuple corresponds to an endog array and the
element corresponds to an exog array.
fit_kwds : dict-like
Keywords needed for the model fitting.
parallel_backend : None or joblib parallel_backend object
used to allow support for more complicated backends,
ex: dask.distributed
init_kwds_generator : generator or None
Additional keyword generator that produces model init_kwds
that may vary based on data partition. The current usecase
is for WLS and GLS
Returns
-------
join_method result. For the default, _join_debiased, it returns a
p length array.
"""
from statsmodels.tools.parallel import parallel_func
par, f, n_jobs = parallel_func(_helper_fit_partition, self.partitions)
if parallel_backend is None and init_kwds_generator is None:
results_l = par(f(self, pnum, endog, exog, fit_kwds)
for pnum, (endog, exog)
in enumerate(data_generator))
elif parallel_backend is not None and init_kwds_generator is None:
with parallel_backend:
results_l = par(f(self, pnum, endog, exog, fit_kwds)
for pnum, (endog, exog)
in enumerate(data_generator))
elif parallel_backend is None and init_kwds_generator is not None:
tup_gen = enumerate(zip(data_generator, init_kwds_generator))
results_l = par(f(self, pnum, endog, exog, fit_kwds, init_kwds)
for pnum, ((endog, exog), init_kwds)
in tup_gen)
elif parallel_backend is not None and init_kwds_generator is not None:
tup_gen = enumerate(zip(data_generator, init_kwds_generator))
with parallel_backend:
results_l = par(f(self, pnum, endog, exog, fit_kwds, init_kwds)
for pnum, ((endog, exog), init_kwds)
in tup_gen)
return results_l
[docs]
class DistributedResults(LikelihoodModelResults):
"""
Class to contain model results
Parameters
----------
model : class instance
Class instance for model used for distributed data,
this particular instance uses fake data and is really
only to allow use of methods like predict.
params : ndarray
Parameter estimates from the fit model.
"""
def __init__(self, model, params):
super().__init__(model, params)
[docs]
def predict(self, exog, *args, **kwargs):
"""Calls self.model.predict for the provided exog. See
Results.predict.
Parameters
----------
exog : array_like NOT optional
The values for which we want to predict, unlike standard
predict this is NOT optional since the data in self.model
is fake.
*args :
Some models can take additional arguments. See the
predict method of the model for the details.
**kwargs :
Some models can take additional keywords arguments. See the
predict method of the model for the details.
Returns
-------
prediction : ndarray, pandas.Series or pandas.DataFrame
See self.model.predict
"""
return self.model.predict(self.params, exog, *args, **kwargs)
Last update:
Oct 03, 2024