Source code for statsmodels.stats.diagnostic

"""
Various Statistical Tests

Author: josef-pktd
License: BSD-3

Notes
-----
Almost fully verified against R or Gretl, not all options are the same.
In many cases of Lagrange multiplier tests both the LM test and the F test is
returned. In some but not all cases, R has the option to choose the test
statistic. Some alternative test statistic results have not been verified.

TODO
* refactor to store intermediate results

missing:

* pvalues for breaks_hansen
* additional options, compare with R, check where ddof is appropriate
* new tests:
  - breaks_ap, more recent breaks tests
  - specification tests against nonparametric alternatives
"""
from statsmodels.compat.pandas import deprecate_kwarg

from collections.abc import Iterable

import numpy as np
import pandas as pd
from scipy import stats

from statsmodels.regression.linear_model import OLS, RegressionResultsWrapper
from statsmodels.stats._adnorm import anderson_statistic, normal_ad
from statsmodels.stats._lilliefors import (
    kstest_exponential,
    kstest_fit,
    kstest_normal,
    lilliefors,
)
from statsmodels.tools.validation import (
    array_like,
    bool_like,
    dict_like,
    float_like,
    int_like,
    string_like,
)
from statsmodels.tsa.tsatools import lagmat

__all__ = ["kstest_fit", "lilliefors", "kstest_normal", "kstest_exponential",
           "normal_ad", "compare_cox", "compare_j", "acorr_breusch_godfrey",
           "acorr_ljungbox", "acorr_lm", "het_arch", "het_breuschpagan",
           "het_goldfeldquandt", "het_white", "spec_white", "linear_lm",
           "linear_rainbow", "linear_harvey_collier", "anderson_statistic"]


NESTED_ERROR = """\
The exog in results_x and in results_z are nested. {test} requires \
that models are non-nested.
"""


def _check_nested_exog(small, large):
    """
    Check if a larger exog nests a smaller exog

    Parameters
    ----------
    small : ndarray
        exog from smaller model
    large : ndarray
        exog from larger model

    Returns
    -------
    bool
        True if small is nested by large
    """

    if small.shape[1] > large.shape[1]:
        return False
    coef = np.linalg.lstsq(large, small, rcond=None)[0]
    err = small - large @ coef
    return np.linalg.matrix_rank(np.c_[large, err]) == large.shape[1]


def _check_nested_results(results_x, results_z):
    if not isinstance(results_x, RegressionResultsWrapper):
        raise TypeError("results_x must come from a linear regression model")
    if not isinstance(results_z, RegressionResultsWrapper):
        raise TypeError("results_z must come from a linear regression model")
    if not np.allclose(results_x.model.endog, results_z.model.endog):
        raise ValueError("endogenous variables in models are not the same")

    x = results_x.model.exog
    z = results_z.model.exog

    nested = False
    if x.shape[1] <= z.shape[1]:
        nested = nested or _check_nested_exog(x, z)
    else:
        nested = nested or _check_nested_exog(z, x)
    return nested


class ResultsStore:
    def __str__(self):
        return getattr(self, '_str', self.__class__.__name__)


[docs] def compare_cox(results_x, results_z, store=False): """ Compute the Cox test for non-nested models Parameters ---------- results_x : Result instance result instance of first model results_z : Result instance result instance of second model store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see [1]_ for more information. Formulas from [1]_, section 8.3.4 translated to code Matches results for Example 8.3 in Greene References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). """ if _check_nested_results(results_x, results_z): raise ValueError(NESTED_ERROR.format(test="Cox comparison")) x = results_x.model.exog z = results_z.model.exog nobs = results_x.model.endog.shape[0] sigma2_x = results_x.ssr / nobs sigma2_z = results_z.ssr / nobs yhat_x = results_x.fittedvalues res_dx = OLS(yhat_x, z).fit() err_zx = res_dx.resid res_xzx = OLS(err_zx, x).fit() err_xzx = res_xzx.resid sigma2_zx = sigma2_x + np.dot(err_zx.T, err_zx) / nobs c01 = nobs / 2. * (np.log(sigma2_z) - np.log(sigma2_zx)) v01 = sigma2_x * np.dot(err_xzx.T, err_xzx) / sigma2_zx ** 2 q = c01 / np.sqrt(v01) pval = 2 * stats.norm.sf(np.abs(q)) if store: res = ResultsStore() res.res_dx = res_dx res.res_xzx = res_xzx res.c01 = c01 res.v01 = v01 res.q = q res.pvalue = pval res.dist = stats.norm return q, pval, res return q, pval
[docs] def compare_j(results_x, results_z, store=False): """ Compute the J-test for non-nested models Parameters ---------- results_x : RegressionResults The result instance of first model. results_z : RegressionResults The result instance of second model. store : bool, default False If true, then the intermediate results are returned. Returns ------- tstat : float t statistic for the test that including the fitted values of the first model in the second model has no effect. pvalue : float two-sided pvalue for the t statistic res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- From description in Greene, section 8.3.3. Matches results for Example 8.3, Greene. Tests of non-nested hypothesis might not provide unambiguous answers. The test should be performed in both directions and it is possible that both or neither test rejects. see Greene for more information. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). """ # TODO: Allow cov to be specified if _check_nested_results(results_x, results_z): raise ValueError(NESTED_ERROR.format(test="J comparison")) y = results_x.model.endog z = results_z.model.exog yhat_x = results_x.fittedvalues res_zx = OLS(y, np.column_stack((yhat_x, z))).fit() tstat = res_zx.tvalues[0] pval = res_zx.pvalues[0] if store: res = ResultsStore() res.res_zx = res_zx res.dist = stats.t(res_zx.df_resid) res.teststat = tstat res.pvalue = pval return tstat, pval, res return tstat, pval
[docs] def compare_encompassing(results_x, results_z, cov_type="nonrobust", cov_kwargs=None): r""" Davidson-MacKinnon encompassing test for comparing non-nested models Parameters ---------- results_x : Result instance result instance of first model results_z : Result instance result instance of second model cov_type : str, default "nonrobust Covariance type. The default is "nonrobust` which uses the classic OLS covariance estimator. Specify one of "HC0", "HC1", "HC2", "HC3" to use White's covariance estimator. All covariance types supported by ``OLS.fit`` are accepted. cov_kwargs : dict, default None Dictionary of covariance options passed to ``OLS.fit``. See OLS.fit for more details. Returns ------- DataFrame A DataFrame with two rows and four columns. The row labeled x contains results for the null that the model contained in results_x is equivalent to the encompassing model. The results in the row labeled z correspond to the test that the model contained in results_z are equivalent to the encompassing model. The columns are the test statistic, its p-value, and the numerator and denominator degrees of freedom. The test statistic has an F distribution. The numerator degree of freedom is the number of variables in the encompassing model that are not in the x or z model. The denominator degree of freedom is the number of observations minus the number of variables in the nesting model. Notes ----- The null is that the fit produced using x is the same as the fit produced using both x and z. When testing whether x is encompassed, the model estimated is .. math:: Y = X\beta + Z_1\gamma + \epsilon where :math:`Z_1` are the columns of :math:`Z` that are not spanned by :math:`X`. The null is :math:`H_0:\gamma=0`. When testing whether z is encompassed, the roles of :math:`X` and :math:`Z` are reversed. Implementation of Davidson and MacKinnon (1993)'s encompassing test. Performs two Wald tests where models x and z are compared to a model that nests the two. The Wald tests are performed by using an OLS regression. """ if _check_nested_results(results_x, results_z): raise ValueError(NESTED_ERROR.format(test="Testing encompassing")) y = results_x.model.endog x = results_x.model.exog z = results_z.model.exog def _test_nested(endog, a, b, cov_est, cov_kwds): err = b - a @ np.linalg.lstsq(a, b, rcond=None)[0] u, s, v = np.linalg.svd(err) eps = np.finfo(np.double).eps tol = s.max(axis=-1, keepdims=True) * max(err.shape) * eps non_zero = np.abs(s) > tol aug = err @ v[:, non_zero] aug_reg = np.hstack([a, aug]) k_a = aug.shape[1] k = aug_reg.shape[1] res = OLS(endog, aug_reg).fit(cov_type=cov_est, cov_kwds=cov_kwds) r_matrix = np.zeros((k_a, k)) r_matrix[:, -k_a:] = np.eye(k_a) test = res.wald_test(r_matrix, use_f=True, scalar=True) stat, pvalue = test.statistic, test.pvalue df_num, df_denom = int(test.df_num), int(test.df_denom) return stat, pvalue, df_num, df_denom x_nested = _test_nested(y, x, z, cov_type, cov_kwargs) z_nested = _test_nested(y, z, x, cov_type, cov_kwargs) return pd.DataFrame([x_nested, z_nested], index=["x", "z"], columns=["stat", "pvalue", "df_num", "df_denom"])
[docs] def acorr_ljungbox(x, lags=None, boxpierce=False, model_df=0, period=None, return_df=True, auto_lag=False): """ Ljung-Box test of autocorrelation in residuals. Parameters ---------- x : array_like The data series. The data is demeaned before the test statistic is computed. lags : {int, array_like}, default None If lags is an integer then this is taken to be the largest lag that is included, the test result is reported for all smaller lag length. If lags is a list or array, then all lags are included up to the largest lag in the list, however only the tests for the lags in the list are reported. If lags is None, then the default maxlag is min(10, nobs // 5). The default number of lags changes if period is set. boxpierce : bool, default False If true, then additional to the results of the Ljung-Box test also the Box-Pierce test results are returned. model_df : int, default 0 Number of degrees of freedom consumed by the model. In an ARMA model, this value is usually p+q where p is the AR order and q is the MA order. This value is subtracted from the degrees-of-freedom used in the test so that the adjusted dof for the statistics are lags - model_df. If lags - model_df <= 0, then NaN is returned. period : int, default None The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. auto_lag : bool, default False Flag indicating whether to automatically determine the optimal lag length based on threshold of maximum correlation value. Returns ------- DataFrame Frame with columns: * lb_stat - The Ljung-Box test statistic. * lb_pvalue - The p-value based on chi-square distribution. The p-value is computed as 1 - chi2.cdf(lb_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. * bp_stat - The Box-Pierce test statistic. * bp_pvalue - The p-value based for Box-Pierce test on chi-square distribution. The p-value is computed as 1 - chi2.cdf(bp_stat, dof) where dof is lag - model_df. If lag - model_df <= 0, then NaN is returned for the pvalue. See Also -------- statsmodels.regression.linear_model.OLS.fit Regression model fitting. statsmodels.regression.linear_model.RegressionResults Results from linear regression models. statsmodels.stats.stattools.q_stat Ljung-Box test statistic computed from estimated autocorrelations. Notes ----- Ljung-Box and Box-Pierce statistic differ in their scaling of the autocorrelation function. Ljung-Box test is has better finite-sample properties. References ---------- .. [*] Green, W. "Econometric Analysis," 5th ed., Pearson, 2003. .. [*] J. Carlos Escanciano, Ignacio N. Lobato "An automatic Portmanteau test for serial correlation"., Volume 151, 2009. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.sunspots.load_pandas().data >>> res = sm.tsa.ARMA(data["SUNACTIVITY"], (1,1)).fit(disp=-1) >>> sm.stats.acorr_ljungbox(res.resid, lags=[10], return_df=True) lb_stat lb_pvalue 10 214.106992 1.827374e-40 """ # Avoid cyclic import from statsmodels.tsa.stattools import acf x = array_like(x, "x") period = int_like(period, "period", optional=True) model_df = int_like(model_df, "model_df", optional=False) if period is not None and period <= 1: raise ValueError("period must be >= 2") if model_df < 0: raise ValueError("model_df must be >= 0") nobs = x.shape[0] if auto_lag: maxlag = nobs - 1 # Compute sum of squared autocorrelations sacf = acf(x, nlags=maxlag, fft=False) if not boxpierce: q_sacf = (nobs * (nobs + 2) * np.cumsum(sacf[1:maxlag + 1] ** 2 / (nobs - np.arange(1, maxlag + 1)))) else: q_sacf = nobs * np.cumsum(sacf[1:maxlag + 1] ** 2) # obtain thresholds q = 2.4 threshold = np.sqrt(q * np.log(nobs)) threshold_metric = np.abs(sacf).max() * np.sqrt(nobs) # compute penalized sum of squared autocorrelations if (threshold_metric <= threshold): q_sacf = q_sacf - (np.arange(1, nobs) * np.log(nobs)) else: q_sacf = q_sacf - (2 * np.arange(1, nobs)) # note: np.argmax returns first (i.e., smallest) index of largest value lags = np.argmax(q_sacf) lags = max(1, lags) # optimal lag has to be at least 1 lags = int_like(lags, "lags") lags = np.arange(1, lags + 1) elif period is not None: lags = np.arange(1, min(nobs // 5, 2 * period) + 1, dtype=int) elif lags is None: lags = np.arange(1, min(nobs // 5, 10) + 1, dtype=int) elif not isinstance(lags, Iterable): lags = int_like(lags, "lags") lags = np.arange(1, lags + 1) lags = array_like(lags, "lags", dtype="int") maxlag = lags.max() # normalize by nobs not (nobs-nlags) # SS: unbiased=False is default now sacf = acf(x, nlags=maxlag, fft=False) sacf2 = sacf[1:maxlag + 1] ** 2 / (nobs - np.arange(1, maxlag + 1)) qljungbox = nobs * (nobs + 2) * np.cumsum(sacf2)[lags - 1] adj_lags = lags - model_df pval = np.full_like(qljungbox, np.nan) loc = adj_lags > 0 pval[loc] = stats.chi2.sf(qljungbox[loc], adj_lags[loc]) if not boxpierce: return pd.DataFrame({"lb_stat": qljungbox, "lb_pvalue": pval}, index=lags) qboxpierce = nobs * np.cumsum(sacf[1:maxlag + 1] ** 2)[lags - 1] pvalbp = np.full_like(qljungbox, np.nan) pvalbp[loc] = stats.chi2.sf(qboxpierce[loc], adj_lags[loc]) return pd.DataFrame({"lb_stat": qljungbox, "lb_pvalue": pval, "bp_stat": qboxpierce, "bp_pvalue": pvalbp}, index=lags)
[docs] @deprecate_kwarg("maxlag", "nlags") def acorr_lm(resid, nlags=None, store=False, *, period=None, ddof=0, cov_type="nonrobust", cov_kwargs=None): """ Lagrange Multiplier tests for autocorrelation. This is a generic Lagrange Multiplier test for autocorrelation. Returns Engle's ARCH test if resid is the squared residual array. Breusch-Godfrey is a variation on this test with additional exogenous variables. Parameters ---------- resid : array_like Time series to test. nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned. period : int, default none The period of a Seasonal time series. Used to compute the max lag for seasonal data which uses min(2*period, nobs // 5) if set. If None, then the default rule is used to set the number of lags. When set, must be >= 2. ddof : int, default 0 The number of degrees of freedom consumed by the model used to produce resid. The default value is 0. cov_type : str, default "nonrobust" Covariance type. The default is "nonrobust` which uses the classic OLS covariance estimator. Specify one of "HC0", "HC1", "HC2", "HC3" to use White's covariance estimator. All covariance types supported by ``OLS.fit`` are accepted. cov_kwargs : dict, default None Dictionary of covariance options passed to ``OLS.fit``. See OLS.fit for more details. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The f statistic of the F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue of the F test. res_store : ResultsStore, optional Intermediate results. Only returned if store=True. See Also -------- het_arch Conditional heteroskedasticity testing. acorr_breusch_godfrey Breusch-Godfrey test for serial correlation. acorr_ljung_box Ljung-Box test for serial correlation. Notes ----- The test statistic is computed as (nobs - ddof) * r2 where r2 is the R-squared from a regression on the residual on nlags lags of the residual. """ resid = array_like(resid, "resid", ndim=1) cov_type = string_like(cov_type, "cov_type") cov_kwargs = {} if cov_kwargs is None else cov_kwargs cov_kwargs = dict_like(cov_kwargs, "cov_kwargs") nobs = resid.shape[0] if period is not None and nlags is None: maxlag = min(nobs // 5, 2 * period) elif nlags is None: maxlag = min(10, nobs // 5) else: maxlag = nlags xdall = lagmat(resid[:, None], maxlag, trim="both") nobs = xdall.shape[0] xdall = np.c_[np.ones((nobs, 1)), xdall] xshort = resid[-nobs:] res_store = ResultsStore() usedlag = maxlag resols = OLS(xshort, xdall[:, :usedlag + 1]).fit(cov_type=cov_type, cov_kwargs=cov_kwargs) fval = float(resols.fvalue) fpval = float(resols.f_pvalue) if cov_type == "nonrobust": lm = (nobs - ddof) * resols.rsquared lmpval = stats.chi2.sf(lm, usedlag) # Note: deg of freedom for LM test: nvars - constant = lags used else: r_matrix = np.hstack((np.zeros((usedlag, 1)), np.eye(usedlag))) test_stat = resols.wald_test(r_matrix, use_f=False, scalar=True) lm = float(test_stat.statistic) lmpval = float(test_stat.pvalue) if store: res_store.resols = resols res_store.usedlag = usedlag return lm, lmpval, fval, fpval, res_store else: return lm, lmpval, fval, fpval
[docs] @deprecate_kwarg("maxlag", "nlags") def het_arch(resid, nlags=None, store=False, ddof=0): """ Engle's Test for Autoregressive Conditional Heteroscedasticity (ARCH). Parameters ---------- resid : ndarray residuals from an estimation, or time series nlags : int, default None Highest lag to use. store : bool, default False If true then the intermediate results are also returned ddof : int, default 0 If the residuals are from a regression, or ARMA estimation, then there are recommendations to correct the degrees of freedom by the number of parameters that have been estimated, for example ddof=p+q for an ARMA(p,q). Returns ------- lm : float Lagrange multiplier test statistic lmpval : float p-value for Lagrange multiplier test fval : float fstatistic for F test, alternative version of the same test based on F test for the parameter restriction fpval : float pvalue for F test res_store : ResultsStore, optional Intermediate results. Returned if store is True. Notes ----- verified against R:FinTS::ArchTest """ return acorr_lm(resid ** 2, nlags=nlags, store=store, ddof=ddof)
[docs] @deprecate_kwarg("results", "res") def acorr_breusch_godfrey(res, nlags=None, store=False): """ Breusch-Godfrey Lagrange Multiplier tests for residual autocorrelation. Parameters ---------- res : RegressionResults Estimation results for which the residuals are tested for serial correlation. nlags : int, optional Number of lags to include in the auxiliary regression. (nlags is highest lag). store : bool, default False If store is true, then an additional class instance that contains intermediate results is returned. Returns ------- lm : float Lagrange multiplier test statistic. lmpval : float The p-value for Lagrange multiplier test. fval : float The value of the f statistic for F test, alternative version of the same test based on F test for the parameter restriction. fpval : float The pvalue for F test. res_store : ResultsStore A class instance that holds intermediate results. Only returned if store=True. Notes ----- BG adds lags of residual to exog in the design matrix for the auxiliary regression with residuals as endog. See [1]_, section 12.7.1. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). """ x = np.asarray(res.resid).squeeze() if x.ndim != 1: raise ValueError("Model resid must be a 1d array. Cannot be used on" " multivariate models.") exog_old = res.model.exog nobs = x.shape[0] if nlags is None: nlags = min(10, nobs // 5) x = np.concatenate((np.zeros(nlags), x)) xdall = lagmat(x[:, None], nlags, trim="both") nobs = xdall.shape[0] xdall = np.c_[np.ones((nobs, 1)), xdall] xshort = x[-nobs:] if exog_old is None: exog = xdall else: exog = np.column_stack((exog_old, xdall)) k_vars = exog.shape[1] resols = OLS(xshort, exog).fit() ft = resols.f_test(np.eye(nlags, k_vars, k_vars - nlags)) fval = ft.fvalue fpval = ft.pvalue fval = float(np.squeeze(fval)) fpval = float(np.squeeze(fpval)) lm = nobs * resols.rsquared lmpval = stats.chi2.sf(lm, nlags) # Note: degrees of freedom for LM test is nvars minus constant = usedlags if store: res_store = ResultsStore() res_store.resols = resols res_store.usedlag = nlags return lm, lmpval, fval, fpval, res_store else: return lm, lmpval, fval, fpval
def _check_het_test(x: np.ndarray, test_name: str) -> None: """ Check validity of the exogenous regressors in a heteroskedasticity test Parameters ---------- x : ndarray The exogenous regressor array test_name : str The test name for the exception """ x_max = x.max(axis=0) if ( not np.any(((x_max - x.min(axis=0)) == 0) & (x_max != 0)) or x.shape[1] < 2 ): raise ValueError( f"{test_name} test requires exog to have at least " "two columns where one is a constant." )
[docs] def het_breuschpagan(resid, exog_het, robust=True): r""" Breusch-Pagan Lagrange Multiplier test for heteroscedasticity The tests the hypothesis that the residual variance does not depend on the variables in x in the form .. :math: \sigma_i = \sigma * f(\alpha_0 + \alpha z_i) Homoscedasticity implies that :math:`\alpha=0`. Parameters ---------- resid : array_like For the Breusch-Pagan test, this should be the residual of a regression. If an array is given in exog, then the residuals are calculated by the an OLS regression or resid on exog. In this case resid should contain the dependent variable. Exog can be the same as x. exog_het : array_like This contains variables suspected of being related to heteroscedasticity in resid. robust : bool, default True Flag indicating whether to use the Koenker version of the test (default) which assumes independent and identically distributed error terms, or the original Breusch-Pagan version which assumes residuals are normally distributed. Returns ------- lm : float lagrange multiplier statistic lm_pvalue : float p-value of lagrange multiplier test fvalue : float f-statistic of the hypothesis that the error variance does not depend on x f_pvalue : float p-value for the f-statistic Notes ----- Assumes x contains constant (for counting dof and calculation of R^2). In the general description of LM test, Greene mentions that this test exaggerates the significance of results in small or moderately large samples. In this case the F-statistic is preferable. **Verification** Chisquare test statistic is exactly (<1e-13) the same result as bptest in R-stats with defaults (studentize=True). **Implementation** This is calculated using the generic formula for LM test using $R^2$ (Greene, section 17.6) and not with the explicit formula (Greene, section 11.4.3), unless `robust` is set to False. The degrees of freedom for the p-value assume x is full rank. References ---------- .. [1] Greene, W. H. Econometric Analysis. New Jersey. Prentice Hall; 5th edition. (2002). .. [2] Breusch, T. S.; Pagan, A. R. (1979). "A Simple Test for Heteroskedasticity and Random Coefficient Variation". Econometrica. 47 (5): 1287–1294. .. [3] Koenker, R. (1981). "A note on studentizing a test for heteroskedasticity". Journal of Econometrics 17 (1): 107–112. """ x = array_like(exog_het, "exog_het", ndim=2) _check_het_test(x, "The Breusch-Pagan") y = array_like(resid, "resid", ndim=1) ** 2 if not robust: y = y / np.mean(y) nobs, nvars = x.shape resols = OLS(y, x).fit() fval = resols.fvalue fpval = resols.f_pvalue lm = nobs * resols.rsquared if robust else resols.ess / 2 # Note: degrees of freedom for LM test is nvars minus constant return lm, stats.chi2.sf(lm, nvars - 1), fval, fpval
[docs] def het_white(resid, exog): """ White's Lagrange Multiplier Test for Heteroscedasticity. Parameters ---------- resid : array_like The residuals. The squared residuals are used as the endogenous variable. exog : array_like The explanatory variables for the variance. Squares and interaction terms are automatically included in the auxiliary regression. Returns ------- lm : float The lagrange multiplier statistic. lm_pvalue :float The p-value of lagrange multiplier test. fvalue : float The f-statistic of the hypothesis that the error variance does not depend on x. This is an alternative test variant not the original LM test. f_pvalue : float The p-value for the f-statistic. Notes ----- Assumes x contains constant (for counting dof). question: does f-statistic make sense? constant ? References ---------- Greene section 11.4.1 5th edition p. 222. Test statistic reproduces Greene 5th, example 11.3. """ x = array_like(exog, "exog", ndim=2) y = array_like(resid, "resid", ndim=2, shape=(x.shape[0], 1)) _check_het_test(x, "White's heteroskedasticity") nobs, nvars0 = x.shape i0, i1 = np.triu_indices(nvars0) exog = x[:, i0] * x[:, i1] nobs, nvars = exog.shape assert nvars == nvars0 * (nvars0 - 1) / 2. + nvars0 resols = OLS(y ** 2, exog).fit() fval = resols.fvalue fpval = resols.f_pvalue lm = nobs * resols.rsquared # Note: degrees of freedom for LM test is nvars minus constant # degrees of freedom take possible reduced rank in exog into account # df_model checks the rank to determine df # extra calculation that can be removed: assert resols.df_model == np.linalg.matrix_rank(exog) - 1 lmpval = stats.chi2.sf(lm, resols.df_model) return lm, lmpval, fval, fpval
[docs] def het_goldfeldquandt(y, x, idx=None, split=None, drop=None, alternative="increasing", store=False): """ Goldfeld-Quandt homoskedasticity test. This test examines whether the residual variance is the same in 2 subsamples. Parameters ---------- y : array_like endogenous variable x : array_like exogenous variable, regressors idx : int, default None column index of variable according to which observations are sorted for the split split : {int, float}, default None If an integer, this is the index at which sample is split. If a float in 0<split<1 then split is interpreted as fraction of the observations in the first sample. If None, uses nobs//2. drop : {int, float}, default None If this is not None, then observation are dropped from the middle part of the sorted series. If 0<split<1 then split is interpreted as fraction of the number of observations to be dropped. Note: Currently, observations are dropped between split and split+drop, where split and drop are the indices (given by rounding if specified as fraction). The first sample is [0:split], the second sample is [split+drop:] alternative : {"increasing", "decreasing", "two-sided"} The default is increasing. This specifies the alternative for the p-value calculation. store : bool, default False Flag indicating to return the regression results Returns ------- fval : float value of the F-statistic pval : float p-value of the hypothesis that the variance in one subsample is larger than in the other subsample ordering : str The ordering used in the alternative. res_store : ResultsStore, optional Storage for the intermediate and final results that are calculated Notes ----- The Null hypothesis is that the variance in the two sub-samples are the same. The alternative hypothesis, can be increasing, i.e. the variance in the second sample is larger than in the first, or decreasing or two-sided. Results are identical R, but the drop option is defined differently. (sorting by idx not tested yet) """ x = np.asarray(x) y = np.asarray(y) # **2 nobs, nvars = x.shape if split is None: split = nobs // 2 elif (0 < split) and (split < 1): split = int(nobs * split) if drop is None: start2 = split elif (0 < drop) and (drop < 1): start2 = split + int(nobs * drop) else: start2 = split + drop if idx is not None: xsortind = np.argsort(x[:, idx]) y = y[xsortind] x = x[xsortind, :] resols1 = OLS(y[:split], x[:split]).fit() resols2 = OLS(y[start2:], x[start2:]).fit() fval = resols2.mse_resid / resols1.mse_resid # if fval>1: if alternative.lower() in ["i", "inc", "increasing"]: fpval = stats.f.sf(fval, resols1.df_resid, resols2.df_resid) ordering = "increasing" elif alternative.lower() in ["d", "dec", "decreasing"]: fpval = stats.f.sf(1. / fval, resols2.df_resid, resols1.df_resid) ordering = "decreasing" elif alternative.lower() in ["2", "2-sided", "two-sided"]: fpval_sm = stats.f.cdf(fval, resols2.df_resid, resols1.df_resid) fpval_la = stats.f.sf(fval, resols2.df_resid, resols1.df_resid) fpval = 2 * min(fpval_sm, fpval_la) ordering = "two-sided" else: raise ValueError("invalid alternative") if store: res = ResultsStore() res.__doc__ = "Test Results for Goldfeld-Quandt test of" \ "heterogeneity" res.fval = fval res.fpval = fpval res.df_fval = (resols2.df_resid, resols1.df_resid) res.resols1 = resols1 res.resols2 = resols2 res.ordering = ordering res.split = split res._str = """\ The Goldfeld-Quandt test for null hypothesis that the variance in the second subsample is {} than in the first subsample: F-statistic ={:8.4f} and p-value ={:8.4f}""".format(ordering, fval, fpval) return fval, fpval, ordering, res return fval, fpval, ordering
[docs] @deprecate_kwarg("result", "res") def linear_reset(res, power=3, test_type="fitted", use_f=False, cov_type="nonrobust", cov_kwargs=None): r""" Ramsey's RESET test for neglected nonlinearity Parameters ---------- res : RegressionResults A results instance from a linear regression. power : {int, List[int]}, default 3 The maximum power to include in the model, if an integer. Includes powers 2, 3, ..., power. If an list of integers, includes all powers in the list. test_type : str, default "fitted" The type of augmentation to use: * "fitted" : (default) Augment regressors with powers of fitted values. * "exog" : Augment exog with powers of exog. Excludes binary regressors. * "princomp": Augment exog with powers of first principal component of exog. use_f : bool, default False Flag indicating whether an F-test should be used (True) or a chi-square test (False). cov_type : str, default "nonrobust Covariance type. The default is "nonrobust` which uses the classic OLS covariance estimator. Specify one of "HC0", "HC1", "HC2", "HC3" to use White's covariance estimator. All covariance types supported by ``OLS.fit`` are accepted. cov_kwargs : dict, default None Dictionary of covariance options passed to ``OLS.fit``. See OLS.fit for more details. Returns ------- ContrastResults Test results for Ramsey's Reset test. See notes for implementation details. Notes ----- The RESET test uses an augmented regression of the form .. math:: Y = X\beta + Z\gamma + \epsilon where :math:`Z` are a set of regressors that are one of: * Powers of :math:`X\hat{\beta}` from the original regression. * Powers of :math:`X`, excluding the constant and binary regressors. * Powers of the first principal component of :math:`X`. If the model includes a constant, this column is dropped before computing the principal component. In either case, the principal component is extracted from the correlation matrix of remaining columns. The test is a Wald test of the null :math:`H_0:\gamma=0`. If use_f is True, then the quadratic-form test statistic is divided by the number of restrictions and the F distribution is used to compute the critical value. """ if not isinstance(res, RegressionResultsWrapper): raise TypeError("result must come from a linear regression model") if bool(res.model.k_constant) and res.model.exog.shape[1] == 1: raise ValueError("exog contains only a constant column. The RESET " "test requires exog to have at least 1 " "non-constant column.") test_type = string_like(test_type, "test_type", options=("fitted", "exog", "princomp")) cov_kwargs = dict_like(cov_kwargs, "cov_kwargs", optional=True) use_f = bool_like(use_f, "use_f") if isinstance(power, int): if power < 2: raise ValueError("power must be >= 2") power = np.arange(2, power + 1, dtype=int) else: try: power = np.array(power, dtype=int) except Exception: raise ValueError("power must be an integer or list of integers") if power.ndim != 1 or len(set(power)) != power.shape[0] or \ (power < 2).any(): raise ValueError("power must contains distinct integers all >= 2") exog = res.model.exog if test_type == "fitted": aug = np.asarray(res.fittedvalues)[:, None] elif test_type == "exog": # Remove constant and binary aug = res.model.exog binary = ((exog == exog.max(axis=0)) | (exog == exog.min(axis=0))) binary = binary.all(axis=0) if binary.all(): raise ValueError("Model contains only constant or binary data") aug = aug[:, ~binary] else: from statsmodels.multivariate.pca import PCA aug = exog if res.k_constant: retain = np.arange(aug.shape[1]).tolist() retain.pop(int(res.model.data.const_idx)) aug = aug[:, retain] pca = PCA(aug, ncomp=1, standardize=bool(res.k_constant), demean=bool(res.k_constant), method="nipals") aug = pca.factors[:, :1] aug_exog = np.hstack([exog] + [aug ** p for p in power]) mod_class = res.model.__class__ mod = mod_class(res.model.data.endog, aug_exog) cov_kwargs = {} if cov_kwargs is None else cov_kwargs res = mod.fit(cov_type=cov_type, cov_kwargs=cov_kwargs) nrestr = aug_exog.shape[1] - exog.shape[1] nparams = aug_exog.shape[1] r_mat = np.eye(nrestr, nparams, k=nparams-nrestr) return res.wald_test(r_mat, use_f=use_f, scalar=True)
[docs] def linear_harvey_collier(res, order_by=None, skip=None): """ Harvey Collier test for linearity The Null hypothesis is that the regression is correctly modeled as linear. Parameters ---------- res : RegressionResults A results instance from a linear regression. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). Returns ------- tvalue : float The test statistic, based on ttest_1sample. pvalue : float The pvalue of the test. See Also -------- statsmodels.stats.diadnostic.recursive_olsresiduals Recursive OLS residual calculation used in the test. Notes ----- This test is a t-test that the mean of the recursive ols residuals is zero. Calculating the recursive residuals might take some time for large samples. """ # I think this has different ddof than # B.H. Baltagi, Econometrics, 2011, chapter 8 # but it matches Gretl and R:lmtest, pvalue at decimal=13 rr = recursive_olsresiduals(res, skip=skip, alpha=0.95, order_by=order_by) return stats.ttest_1samp(rr[3][3:], 0)
[docs] def linear_rainbow(res, frac=0.5, order_by=None, use_distance=False, center=None): """ Rainbow test for linearity The null hypothesis is the fit of the model using full sample is the same as using a central subset. The alternative is that the fits are difference. The rainbow test has power against many different forms of nonlinearity. Parameters ---------- res : RegressionResults A results instance from a linear regression. frac : float, default 0.5 The fraction of the data to include in the center model. order_by : {ndarray, str, List[str]}, default None If an ndarray, the values in the array are used to sort the observations. If a string or a list of strings, these are interpreted as column name(s) which are then used to lexicographically sort the data. use_distance : bool, default False Flag indicating whether data should be ordered by the Mahalanobis distance to the center. center : {float, int}, default None If a float, the value must be in [0, 1] and the center is center * nobs of the ordered data. If an integer, must be in [0, nobs) and is interpreted as the observation of the ordered data to use. Returns ------- fstat : float The test statistic based on the F test. pvalue : float The pvalue of the test. Notes ----- This test assumes residuals are homoskedastic and may reject a correct linear specification if the residuals are heteroskedastic. """ if not isinstance(res, RegressionResultsWrapper): raise TypeError("res must be a results instance from a linear model.") frac = float_like(frac, "frac") use_distance = bool_like(use_distance, "use_distance") nobs = res.nobs endog = res.model.endog exog = res.model.exog if order_by is not None and use_distance: raise ValueError("order_by and use_distance cannot be simultaneously" "used.") if order_by is not None: if isinstance(order_by, np.ndarray): order_by = array_like(order_by, "order_by", ndim=1, dtype="int") else: if isinstance(order_by, str): order_by = [order_by] try: cols = res.model.data.orig_exog[order_by].copy() except (IndexError, KeyError): raise TypeError("order_by must contain valid column names " "from the exog data used to construct res," "and exog must be a pandas DataFrame.") name = "__index__" while name in cols: name += '_' cols[name] = np.arange(cols.shape[0]) cols = cols.sort_values(order_by) order_by = np.asarray(cols[name]) endog = endog[order_by] exog = exog[order_by] if use_distance: center = int(nobs) // 2 if center is None else center if isinstance(center, float): if not 0.0 <= center <= 1.0: raise ValueError("center must be in (0, 1) when a float.") center = int(center * (nobs-1)) else: center = int_like(center, "center") if not 0 < center < nobs - 1: raise ValueError("center must be in [0, nobs) when an int.") center_obs = exog[center:center+1] from scipy.spatial.distance import cdist try: err = exog - center_obs vi = np.linalg.inv(err.T @ err / nobs) except np.linalg.LinAlgError: err = exog - exog.mean(0) vi = np.linalg.inv(err.T @ err / nobs) dist = cdist(exog, center_obs, metric='mahalanobis', VI=vi) idx = np.argsort(dist.ravel()) endog = endog[idx] exog = exog[idx] lowidx = np.ceil(0.5 * (1 - frac) * nobs).astype(int) uppidx = np.floor(lowidx + frac * nobs).astype(int) if uppidx - lowidx < exog.shape[1]: raise ValueError("frac is too small to perform test. frac * nobs" "must be greater than the number of exogenous" "variables in the model.") mi_sl = slice(lowidx, uppidx) res_mi = OLS(endog[mi_sl], exog[mi_sl]).fit() nobs_mi = res_mi.model.endog.shape[0] ss_mi = res_mi.ssr ss = res.ssr fstat = (ss - ss_mi) / (nobs - nobs_mi) / ss_mi * res_mi.df_resid pval = stats.f.sf(fstat, nobs - nobs_mi, res_mi.df_resid) return fstat, pval
[docs] def linear_lm(resid, exog, func=None): """ Lagrange multiplier test for linearity against functional alternative # TODO: Remove the restriction limitations: Assumes currently that the first column is integer. Currently it does not check whether the transformed variables contain NaNs, for example log of negative number. Parameters ---------- resid : ndarray residuals of a regression exog : ndarray exogenous variables for which linearity is tested func : callable, default None If func is None, then squares are used. func needs to take an array of exog and return an array of transformed variables. Returns ------- lm : float Lagrange multiplier test statistic lm_pval : float p-value of Lagrange multiplier tes ftest : ContrastResult instance the results from the F test variant of this test Notes ----- Written to match Gretl's linearity test. The test runs an auxiliary regression of the residuals on the combined original and transformed regressors. The Null hypothesis is that the linear specification is correct. """ if func is None: def func(x): return np.power(x, 2) exog = np.asarray(exog) exog_aux = np.column_stack((exog, func(exog[:, 1:]))) nobs, k_vars = exog.shape ls = OLS(resid, exog_aux).fit() ftest = ls.f_test(np.eye(k_vars - 1, k_vars * 2 - 1, k_vars)) lm = nobs * ls.rsquared lm_pval = stats.chi2.sf(lm, k_vars - 1) return lm, lm_pval, ftest
[docs] def spec_white(resid, exog): """ White's Two-Moment Specification Test Parameters ---------- resid : array_like OLS residuals. exog : array_like OLS design matrix. Returns ------- stat : float The test statistic. pval : float A chi-square p-value for test statistic. dof : int The degrees of freedom. See Also -------- het_white White's test for heteroskedasticity. Notes ----- Implements the two-moment specification test described by White's Theorem 2 (1980, p. 823) which compares the standard OLS covariance estimator with White's heteroscedasticity-consistent estimator. The test statistic is shown to be chi-square distributed. Null hypothesis is homoscedastic and correctly specified. Assumes the OLS design matrix contains an intercept term and at least one variable. The intercept is removed to calculate the test statistic. Interaction terms (squares and crosses of OLS regressors) are added to the design matrix to calculate the test statistic. Degrees-of-freedom (full rank) = nvar + nvar * (nvar + 1) / 2 Linearly dependent columns are removed to avoid singular matrix error. References ---------- .. [*] White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica, 48: 817-838. """ x = array_like(exog, "exog", ndim=2) e = array_like(resid, "resid", ndim=1) if x.shape[1] < 2 or not np.any(np.ptp(x, 0) == 0.0): raise ValueError("White's specification test requires at least two" "columns where one is a constant.") # add interaction terms i0, i1 = np.triu_indices(x.shape[1]) exog = np.delete(x[:, i0] * x[:, i1], 0, 1) # collinearity check - see _fit_collinear atol = 1e-14 rtol = 1e-13 tol = atol + rtol * exog.var(0) r = np.linalg.qr(exog, mode="r") mask = np.abs(r.diagonal()) < np.sqrt(tol) exog = exog[:, np.where(~mask)[0]] # calculate test statistic sqe = e * e sqmndevs = sqe - np.mean(sqe) d = np.dot(exog.T, sqmndevs) devx = exog - np.mean(exog, axis=0) devx *= sqmndevs[:, None] b = devx.T.dot(devx) stat = d.dot(np.linalg.solve(b, d)) # chi-square test dof = devx.shape[1] pval = stats.chi2.sf(stat, dof) return stat, pval, dof
[docs] @deprecate_kwarg("olsresults", "res") def recursive_olsresiduals(res, skip=None, lamda=0.0, alpha=0.95, order_by=None): """ Calculate recursive ols with residuals and Cusum test statistic Parameters ---------- res : RegressionResults Results from estimation of a regression model. skip : int, default None The number of observations to use for initial OLS, if None then skip is set equal to the number of regressors (columns in exog). lamda : float, default 0.0 The weight for Ridge correction to initial (X'X)^{-1}. alpha : {0.90, 0.95, 0.99}, default 0.95 Confidence level of test, currently only two values supported, used for confidence interval in cusum graph. order_by : array_like, default None Integer array specifying the order of the residuals. If not provided, the order of the residuals is not changed. If provided, must have the same number of observations as the endogenous variable. Returns ------- rresid : ndarray The recursive ols residuals. rparams : ndarray The recursive ols parameter estimates. rypred : ndarray The recursive prediction of endogenous variable. rresid_standardized : ndarray The recursive residuals standardized so that N(0,sigma2) distributed, where sigma2 is the error variance. rresid_scaled : ndarray The recursive residuals normalize so that N(0,1) distributed. rcusum : ndarray The cumulative residuals for cusum test. rcusumci : ndarray The confidence interval for cusum test using a size of alpha. Notes ----- It produces same recursive residuals as other version. This version updates the inverse of the X'X matrix and does not require matrix inversion during updating. looks efficient but no timing Confidence interval in Greene and Brown, Durbin and Evans is the same as in Ploberger after a little bit of algebra. References ---------- jplv to check formulas, follows Harvey BigJudge 5.5.2b for formula for inverse(X'X) updating Greene section 7.5.2 Brown, R. L., J. Durbin, and J. M. Evans. “Techniques for Testing the Constancy of Regression Relationships over Time.” Journal of the Royal Statistical Society. Series B (Methodological) 37, no. 2 (1975): 149-192. """ if not isinstance(res, RegressionResultsWrapper): raise TypeError("res a regression results instance") y = res.model.endog x = res.model.exog order_by = array_like(order_by, "order_by", dtype="int", optional=True, ndim=1, shape=(y.shape[0],)) # intialize with skip observations if order_by is not None: x = x[order_by] y = y[order_by] nobs, nvars = x.shape if skip is None: skip = nvars rparams = np.nan * np.zeros((nobs, nvars)) rresid = np.nan * np.zeros(nobs) rypred = np.nan * np.zeros(nobs) rvarraw = np.nan * np.zeros(nobs) x0 = x[:skip] if np.linalg.matrix_rank(x0) < x0.shape[1]: err_msg = """\ "The initial regressor matrix, x[:skip], issingular. You must use a value of skip large enough to ensure that the first OLS estimator is well-defined. """ raise ValueError(err_msg) y0 = y[:skip] # add Ridge to start (not in jplv) xtxi = np.linalg.inv(np.dot(x0.T, x0) + lamda * np.eye(nvars)) xty = np.dot(x0.T, y0) # xi * y #np.dot(xi, y) beta = np.dot(xtxi, xty) rparams[skip - 1] = beta yipred = np.dot(x[skip - 1], beta) rypred[skip - 1] = yipred rresid[skip - 1] = y[skip - 1] - yipred rvarraw[skip - 1] = 1 + np.dot(x[skip - 1], np.dot(xtxi, x[skip - 1])) for i in range(skip, nobs): xi = x[i:i + 1, :] yi = y[i] # get prediction error with previous beta yipred = np.dot(xi, beta) rypred[i] = np.squeeze(yipred) residi = yi - yipred rresid[i] = np.squeeze(residi) # update beta and inverse(X'X) tmp = np.dot(xtxi, xi.T) ft = 1 + np.dot(xi, tmp) xtxi = xtxi - np.dot(tmp, tmp.T) / ft # BigJudge equ 5.5.15 beta = beta + (tmp * residi / ft).ravel() # BigJudge equ 5.5.14 rparams[i] = beta rvarraw[i] = np.squeeze(ft) rresid_scaled = rresid / np.sqrt(rvarraw) # N(0,sigma2) distributed nrr = nobs - skip # sigma2 = rresid_scaled[skip-1:].var(ddof=1) #var or sum of squares ? # Greene has var, jplv and Ploberger have sum of squares (Ass.:mean=0) # Gretl uses: by reverse engineering matching their numbers sigma2 = rresid_scaled[skip:].var(ddof=1) rresid_standardized = rresid_scaled / np.sqrt(sigma2) # N(0,1) distributed rcusum = rresid_standardized[skip - 1:].cumsum() # confidence interval points in Greene p136 looks strange. Cleared up # this assumes sum of independent standard normal, which does not take into # account that we make many tests at the same time if alpha == 0.90: a = 0.850 elif alpha == 0.95: a = 0.948 elif alpha == 0.99: a = 1.143 else: raise ValueError("alpha can only be 0.9, 0.95 or 0.99") # following taken from Ploberger, # crit = a * np.sqrt(nrr) rcusumci = (a * np.sqrt(nrr) + 2 * a * np.arange(0, nobs - skip) / np.sqrt( nrr)) * np.array([[-1.], [+1.]]) return (rresid, rparams, rypred, rresid_standardized, rresid_scaled, rcusum, rcusumci)
[docs] def breaks_hansen(olsresults): """ Test for model stability, breaks in parameters for ols, Hansen 1992 Parameters ---------- olsresults : RegressionResults Results from estimation of a regression model. Returns ------- teststat : float Hansen's test statistic. crit : ndarray The critical values at alpha=0.95 for different nvars. Notes ----- looks good in example, maybe not very powerful for small changes in parameters According to Greene, distribution of test statistics depends on nvar but not on nobs. Test statistic is verified against R:strucchange References ---------- Greene section 7.5.1, notation follows Greene """ x = olsresults.model.exog resid = array_like(olsresults.resid, "resid", shape=(x.shape[0], 1)) nobs, nvars = x.shape resid2 = resid ** 2 ft = np.c_[x * resid[:, None], (resid2 - resid2.mean())] score = ft.cumsum(0) f = nobs * (ft[:, :, None] * ft[:, None, :]).sum(0) s = (score[:, :, None] * score[:, None, :]).sum(0) h = np.trace(np.dot(np.linalg.inv(f), s)) crit95 = np.array([(2, 1.01), (6, 1.9), (15, 3.75), (19, 4.52)], dtype=[("nobs", int), ("crit", float)]) # TODO: get critical values from Bruce Hansen's 1992 paper return h, crit95
[docs] def breaks_cusumolsresid(resid, ddof=0): """ Cusum test for parameter stability based on ols residuals. Parameters ---------- resid : ndarray An array of residuals from an OLS estimation. ddof : int The number of parameters in the OLS estimation, used as degrees of freedom correction for error variance. Returns ------- sup_b : float The test statistic, maximum of absolute value of scaled cumulative OLS residuals. pval : float Probability of observing the data under the null hypothesis of no structural change, based on asymptotic distribution which is a Brownian Bridge crit: list The tabulated critical values, for alpha = 1%, 5% and 10%. Notes ----- Tested against R:structchange. Not clear: Assumption 2 in Ploberger, Kramer assumes that exog x have asymptotically zero mean, x.mean(0) = [1, 0, 0, ..., 0] Is this really necessary? I do not see how it can affect the test statistic under the null. It does make a difference under the alternative. Also, the asymptotic distribution of test statistic depends on this. From examples it looks like there is little power for standard cusum if exog (other than constant) have mean zero. References ---------- Ploberger, Werner, and Walter Kramer. “The Cusum Test with OLS Residuals.” Econometrica 60, no. 2 (March 1992): 271-285. """ resid = np.asarray(resid).ravel() nobs = len(resid) nobssigma2 = (resid ** 2).sum() if ddof > 0: nobssigma2 = nobssigma2 / (nobs - ddof) * nobs # b is asymptotically a Brownian Bridge b = resid.cumsum() / np.sqrt(nobssigma2) # use T*sigma directly # asymptotically distributed as standard Brownian Bridge sup_b = np.abs(b).max() crit = [(1, 1.63), (5, 1.36), (10, 1.22)] # Note stats.kstwobign.isf(0.1) is distribution of sup.abs of Brownian # Bridge # >>> stats.kstwobign.isf([0.01,0.05,0.1]) # array([ 1.62762361, 1.35809864, 1.22384787]) pval = stats.kstwobign.sf(sup_b) return sup_b, pval, crit
# def breaks_cusum(recolsresid): # """renormalized cusum test for parameter stability based on recursive # residuals # # # still incorrect: in PK, the normalization for sigma is by T not T-K # also the test statistic is asymptotically a Wiener Process, Brownian # motion # not Brownian Bridge # for testing: result reject should be identical as in standard cusum # version # # References # ---------- # Ploberger, Werner, and Walter Kramer. “The Cusum Test with OLS Residuals.” # Econometrica 60, no. 2 (March 1992): 271-285. # # """ # resid = recolsresid.ravel() # nobssigma2 = (resid**2).sum() # #B is asymptotically a Brownian Bridge # B = resid.cumsum()/np.sqrt(nobssigma2) # use T*sigma directly # nobs = len(resid) # denom = 1. + 2. * np.arange(nobs)/(nobs-1.) #not sure about limits # sup_b = np.abs(B/denom).max() # #asymptotically distributed as standard Brownian Bridge # crit = [(1,1.63), (5, 1.36), (10, 1.22)] # #Note stats.kstwobign.isf(0.1) is distribution of sup.abs of Brownian # Bridge # #>>> stats.kstwobign.isf([0.01,0.05,0.1]) # #array([ 1.62762361, 1.35809864, 1.22384787]) # pval = stats.kstwobign.sf(sup_b) # return sup_b, pval, crit

Last update: Oct 03, 2024