Source code for statsmodels.tsa.ardl.model

from __future__ import annotations

from statsmodels.compat.pandas import Appender, Substitution, call_cached_func

from collections import defaultdict
import datetime as dt
from itertools import combinations, product
import textwrap
from types import SimpleNamespace
from typing import (
    TYPE_CHECKING,
    Any,
    Literal,
    NamedTuple,
    Optional,
    Union,
)
from collections.abc import Hashable, Mapping, Sequence
import warnings

import numpy as np
import pandas as pd
from scipy import stats

from statsmodels.base.data import PandasData
import statsmodels.base.wrapper as wrap
from statsmodels.iolib.summary import Summary, summary_params
from statsmodels.regression.linear_model import OLS
from statsmodels.tools.decorators import cache_readonly
from statsmodels.tools.docstring import Docstring, Parameter, remove_parameters
from statsmodels.tools.sm_exceptions import SpecificationWarning
from statsmodels.tools.typing import (
    ArrayLike1D,
    ArrayLike2D,
    Float64Array,
    NDArray,
)
from statsmodels.tools.validation import (
    array_like,
    bool_like,
    float_like,
    int_like,
)
from statsmodels.tsa.ar_model import (
    AROrderSelectionResults,
    AutoReg,
    AutoRegResults,
    sumofsq,
)
from statsmodels.tsa.ardl import pss_critical_values
from statsmodels.tsa.arima_process import arma2ma
from statsmodels.tsa.base import tsa_model
from statsmodels.tsa.base.prediction import PredictionResults
from statsmodels.tsa.deterministic import DeterministicProcess
from statsmodels.tsa.tsatools import lagmat

if TYPE_CHECKING:
    import matplotlib.figure

__all__ = [
    "ARDL",
    "ARDLResults",
    "ardl_select_order",
    "ARDLOrderSelectionResults",
    "UECM",
    "UECMResults",
    "BoundsTestResult",
]


[docs] class BoundsTestResult(NamedTuple): stat: float crit_vals: pd.DataFrame p_values: pd.Series null: str alternative: str def __repr__(self): return f"""\ {self.__class__.__name__} Stat: {self.stat:0.5f} Upper P-value: {self.p_values["upper"]:0.3g} Lower P-value: {self.p_values["lower"]:0.3g} Null: {self.null} Alternative: {self.alternative} """
_UECMOrder = Union[None, int, dict[Hashable, Optional[int]]] _ARDLOrder = Union[ None, int, _UECMOrder, Sequence[int], dict[Hashable, Union[int, Sequence[int], None]], ] _INT_TYPES = (int, np.integer) def _check_order(order: int | Sequence[int] | None, causal: bool) -> bool: if order is None: return True if isinstance(order, (int, np.integer)): if int(order) < int(causal): raise ValueError( f"integer orders must be at least {int(causal)} when causal " f"is {causal}." ) return True for v in order: if not isinstance(v, (int, np.integer)): raise TypeError( "sequence orders must contain non-negative integer values" ) order = [int(v) for v in order] if len(set(order)) != len(order) or min(order) < 0: raise ValueError( "sequence orders must contain distinct non-negative values" ) if int(causal) and min(order) < 1: raise ValueError( "sequence orders must be strictly positive when causal is True" ) return True def _format_order( exog: ArrayLike2D, order: _ARDLOrder, causal: bool ) -> dict[Hashable, list[int]]: keys: list[Hashable] exog_order: dict[Hashable, int | Sequence[int] | None] if exog is None and order in (0, None): return {} if not isinstance(exog, pd.DataFrame): exog = array_like(exog, "exog", ndim=2, maxdim=2) keys = list(range(exog.shape[1])) else: keys = [col for col in exog.columns] if order is None: exog_order = {k: None for k in keys} elif isinstance(order, Mapping): exog_order = order missing = set(keys).difference(order.keys()) extra = set(order.keys()).difference(keys) if extra: msg = ( "order dictionary contains keys for exogenous " "variable(s) that are not contained in exog" ) msg += " Extra keys: " msg += ", ".join(list(sorted([str(v) for v in extra]))) + "." raise ValueError(msg) if missing: msg = ( "exog contains variables that are missing from the order " "dictionary. Missing keys: " ) msg += ", ".join([str(k) for k in missing]) + "." warnings.warn(msg, SpecificationWarning, stacklevel=2) for key in exog_order: _check_order(exog_order[key], causal) elif isinstance(order, _INT_TYPES): _check_order(order, causal) exog_order = {k: int(order) for k in keys} else: _check_order(order, causal) exog_order = {k: list(order) for k in keys} final_order: dict[Hashable, list[int]] = {} for key in exog_order: value = exog_order[key] if value is None: continue assert value is not None if isinstance(value, int): final_order[key] = list(range(int(causal), value + 1)) else: final_order[key] = [int(lag) for lag in value] return final_order
[docs] class ARDL(AutoReg): r""" Autoregressive Distributed Lag (ARDL) Model Parameters ---------- endog : array_like A 1-d endogenous response variable. The dependent variable. lags : {int, list[int]} The number of lags to include in the model if an integer or the list of lag indices to include. For example, [1, 4] will only include lags 1 and 4 while lags=4 will include lags 1, 2, 3, and 4. exog : array_like Exogenous variables to include in the model. Either a DataFrame or an 2-d array-like structure that can be converted to a NumPy array. order : {int, sequence[int], dict} If int, uses lags 0, 1, ..., order for all exog variables. If sequence[int], uses the ``order`` for all variables. If a dict, applies the lags series by series. If ``exog`` is anything other than a DataFrame, the keys are the column index of exog (e.g., 0, 1, ...). If a DataFrame, keys are column names. fixed : array_like Additional fixed regressors that are not lagged. causal : bool, optional Whether to include lag 0 of exog variables. If True, only includes lags 1, 2, ... trend : {'n', 'c', 't', 'ct'}, optional The trend to include in the model: * 'n' - No trend. * 'c' - Constant only. * 't' - Time trend only. * 'ct' - Constant and time trend. The default is 'c'. seasonal : bool, optional Flag indicating whether to include seasonal dummies in the model. If seasonal is True and trend includes 'c', then the first period is excluded from the seasonal terms. deterministic : DeterministicProcess, optional A deterministic process. If provided, trend and seasonal are ignored. A warning is raised if trend is not "n" and seasonal is not False. hold_back : {None, int}, optional Initial observations to exclude from the estimation sample. If None, then hold_back is equal to the maximum lag in the model. Set to a non-zero value to produce comparable models with different lag length. For example, to compare the fit of a model with lags=3 and lags=1, set hold_back=3 which ensures that both models are estimated using observations 3,...,nobs. hold_back must be >= the maximum lag in the model. period : {None, int}, optional The period of the data. Only used if seasonal is True. This parameter can be omitted if using a pandas object for endog that contains a recognized frequency. missing : {"none", "drop", "raise"}, optional Available options are 'none', 'drop', and 'raise'. If 'none', no NaN checking is done. If 'drop', any observations with NaNs are dropped. If 'raise', an error is raised. Default is 'none'. Notes ----- The full specification of an ARDL is .. math :: Y_t = \delta_0 + \delta_1 t + \delta_2 t^2 + \sum_{i=1}^{s-1} \gamma_i I_{[(\mod(t,s) + 1) = i]} + \sum_{j=1}^p \phi_j Y_{t-j} + \sum_{l=1}^k \sum_{m=0}^{o_l} \beta_{l,m} X_{l, t-m} + Z_t \lambda + \epsilon_t where :math:`\delta_\bullet` capture trends, :math:`\gamma_\bullet` capture seasonal shifts, s is the period of the seasonality, p is the lag length of the endogenous variable, k is the number of exogenous variables :math:`X_{l}`, :math:`o_l` is included the lag length of :math:`X_{l}`, :math:`Z_t` are ``r`` included fixed regressors and :math:`\epsilon_t` is a white noise shock. If ``causal`` is ``True``, then the 0-th lag of the exogenous variables is not included and the sum starts at ``m=1``. See the notebook `Autoregressive Distributed Lag Models <../examples/notebooks/generated/autoregressive_distributed_lag.html>`__ for an overview. See Also -------- statsmodels.tsa.ar_model.AutoReg Autoregressive model estimation with optional exogenous regressors statsmodels.tsa.ardl.UECM Unconstrained Error Correction Model estimation statsmodels.tsa.statespace.sarimax.SARIMAX Seasonal ARIMA model estimation with optional exogenous regressors statsmodels.tsa.arima.model.ARIMA ARIMA model estimation Examples -------- >>> from statsmodels.tsa.api import ARDL >>> from statsmodels.datasets import danish_data >>> data = danish_data.load_pandas().data >>> lrm = data.lrm >>> exog = data[["lry", "ibo", "ide"]] A basic model where all variables have 3 lags included >>> ARDL(data.lrm, 3, data[["lry", "ibo", "ide"]], 3) A dictionary can be used to pass custom lag orders >>> ARDL(data.lrm, [1, 3], exog, {"lry": 1, "ibo": 3, "ide": 2}) Setting causal removes the 0-th lag from the exogenous variables >>> exog_lags = {"lry": 1, "ibo": 3, "ide": 2} >>> ARDL(data.lrm, [1, 3], exog, exog_lags, causal=True) A dictionary can also be used to pass specific lags to include. Sequences hold the specific lags to include, while integers are expanded to include [0, 1, ..., lag]. If causal is False, then the 0-th lag is excluded. >>> ARDL(lrm, [1, 3], exog, {"lry": [0, 1], "ibo": [0, 1, 3], "ide": 2}) When using NumPy arrays, the dictionary keys are the column index. >>> import numpy as np >>> lrma = np.asarray(lrm) >>> exoga = np.asarray(exog) >>> ARDL(lrma, 3, exoga, {0: [0, 1], 1: [0, 1, 3], 2: 2}) """ def __init__( self, endog: Sequence[float] | pd.Series | ArrayLike2D, lags: int | Sequence[int] | None, exog: ArrayLike2D | None = None, order: _ARDLOrder = 0, trend: Literal["n", "c", "ct", "ctt"] = "c", *, fixed: ArrayLike2D | None = None, causal: bool = False, seasonal: bool = False, deterministic: DeterministicProcess | None = None, hold_back: int | None = None, period: int | None = None, missing: Literal["none", "drop", "raise"] = "none", ) -> None: self._x = np.empty((0, 0)) self._y = np.empty((0,)) super().__init__( endog, lags, trend=trend, seasonal=seasonal, exog=exog, hold_back=hold_back, period=period, missing=missing, deterministic=deterministic, old_names=False, ) # Reset hold back which was set in AutoReg.__init__ self._causal = bool_like(causal, "causal", strict=True) self.data.orig_fixed = fixed if fixed is not None: fixed_arr = array_like(fixed, "fixed", ndim=2, maxdim=2) if fixed_arr.shape[0] != self.data.endog.shape[0] or not np.all( np.isfinite(fixed_arr) ): raise ValueError( "fixed must be an (nobs, m) array where nobs matches the " "number of observations in the endog variable, and all" "values must be finite" ) if isinstance(fixed, pd.DataFrame): self._fixed_names = list(fixed.columns) else: self._fixed_names = [ f"z.{i}" for i in range(fixed_arr.shape[1]) ] self._fixed = fixed_arr else: self._fixed = np.empty((self.data.endog.shape[0], 0)) self._fixed_names = [] self._blocks: dict[str, np.ndarray] = {} self._names: dict[str, Sequence[str]] = {} # 1. Check and update order self._order = self._check_order(order) # 2. Construct Regressors self._y, self._x = self._construct_regressors(hold_back) # 3. Construct variable names self._endog_name, self._exog_names = self._construct_variable_names() self.data.param_names = self.data.xnames = self._exog_names self.data.ynames = self._endog_name self._causal = True if self._order: min_lags = [min(val) for val in self._order.values()] self._causal = min(min_lags) > 0 self._results_class = ARDLResults self._results_wrapper = ARDLResultsWrapper @property def fixed(self) -> NDArray | pd.DataFrame | None: """The fixed data used to construct the model""" return self.data.orig_fixed @property def causal(self) -> bool: """Flag indicating that the ARDL is causal""" return self._causal @property def ar_lags(self) -> list[int] | None: """The autoregressive lags included in the model""" return None if not self._lags else self._lags @property def dl_lags(self) -> dict[Hashable, list[int]]: """The lags of exogenous variables included in the model""" return self._order @property def ardl_order(self) -> tuple[int, ...]: """The order of the ARDL(p,q)""" ar_order = 0 if not self._lags else int(max(self._lags)) ardl_order = [ar_order] for lags in self._order.values(): if lags is not None: ardl_order.append(int(max(lags))) return tuple(ardl_order) def _setup_regressors(self) -> None: """Place holder to let AutoReg init complete""" self._y = np.empty((self.endog.shape[0] - self._hold_back, 0)) @staticmethod def _format_exog( exog: ArrayLike2D, order: dict[Hashable, list[int]] ) -> dict[Hashable, np.ndarray]: """Transform exogenous variables and orders to regressors""" if not order: return {} max_order = 0 for val in order.values(): if val is not None: max_order = max(max(val), max_order) if not isinstance(exog, pd.DataFrame): exog = array_like(exog, "exog", ndim=2, maxdim=2) exog_lags = {} for key in order: if order[key] is None: continue if isinstance(exog, np.ndarray): assert isinstance(key, int) col = exog[:, key] else: col = exog[key] lagged_col = lagmat(col, max_order, original="in") lags = order[key] exog_lags[key] = lagged_col[:, lags] return exog_lags def _check_order(self, order: _ARDLOrder) -> dict[Hashable, list[int]]: """Validate and standardize the model order""" return _format_order(self.data.orig_exog, order, self._causal) def _fit( self, cov_type: str = "nonrobust", cov_kwds: dict[str, Any] = None, use_t: bool = True, ) -> tuple[np.ndarray, np.ndarray, np.ndarray]: if self._x.shape[1] == 0: return np.empty((0,)), np.empty((0, 0)), np.empty((0, 0)) ols_mod = OLS(self._y, self._x) ols_res = ols_mod.fit( cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t ) cov_params = ols_res.cov_params() use_t = ols_res.use_t if cov_type == "nonrobust" and not use_t: nobs = self._y.shape[0] k = self._x.shape[1] scale = nobs / (nobs - k) cov_params /= scale return ols_res.params, cov_params, ols_res.normalized_cov_params
[docs] def fit( self, *, cov_type: str = "nonrobust", cov_kwds: dict[str, Any] = None, use_t: bool = True, ) -> ARDLResults: """ Estimate the model parameters. Parameters ---------- cov_type : str The covariance estimator to use. The most common choices are listed below. Supports all covariance estimators that are available in ``OLS.fit``. * 'nonrobust' - The class OLS covariance estimator that assumes homoskedasticity. * 'HC0', 'HC1', 'HC2', 'HC3' - Variants of White's (or Eiker-Huber-White) covariance estimator. `HC0` is the standard implementation. The other make corrections to improve the finite sample performance of the heteroskedasticity robust covariance estimator. * 'HAC' - Heteroskedasticity-autocorrelation robust covariance estimation. Supports cov_kwds. - `maxlags` integer (required) : number of lags to use. - `kernel` callable or str (optional) : kernel currently available kernels are ['bartlett', 'uniform'], default is Bartlett. - `use_correction` bool (optional) : If true, use small sample correction. cov_kwds : dict, optional A dictionary of keyword arguments to pass to the covariance estimator. `nonrobust` and `HC#` do not support cov_kwds. use_t : bool, optional A flag indicating that inference should use the Student's t distribution that accounts for model degree of freedom. If False, uses the normal distribution. If None, defers the choice to the cov_type. It also removes degree of freedom corrections from the covariance estimator when cov_type is 'nonrobust'. Returns ------- ARDLResults Estimation results. See Also -------- statsmodels.tsa.ar_model.AutoReg Ordinary Least Squares estimation. statsmodels.regression.linear_model.OLS Ordinary Least Squares estimation. statsmodels.regression.linear_model.RegressionResults See ``get_robustcov_results`` for a detailed list of available covariance estimators and options. Notes ----- Use ``OLS`` to estimate model parameters and to estimate parameter covariance. """ params, cov_params, norm_cov_params = self._fit( cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t ) res = ARDLResults( self, params, cov_params, norm_cov_params, use_t=use_t ) return ARDLResultsWrapper(res)
def _construct_regressors( self, hold_back: int | None ) -> tuple[np.ndarray, np.ndarray]: """Construct and format model regressors""" # TODO: Missing adjustment self._maxlag = max(self._lags) if self._lags else 0 _endog_reg, _endog = lagmat( self.data.endog, self._maxlag, original="sep" ) assert isinstance(_endog, np.ndarray) assert isinstance(_endog_reg, np.ndarray) self._endog_reg, self._endog = _endog_reg, _endog if self._endog_reg.shape[1] != len(self._lags): lag_locs = [lag - 1 for lag in self._lags] self._endog_reg = self._endog_reg[:, lag_locs] orig_exog = self.data.orig_exog self._exog = self._format_exog(orig_exog, self._order) exog_maxlag = 0 for val in self._order.values(): exog_maxlag = max(exog_maxlag, max(val) if val is not None else 0) self._maxlag = max(self._maxlag, exog_maxlag) self._deterministic_reg = self._deterministics.in_sample() self._blocks = { "endog": self._endog_reg, "exog": self._exog, "deterministic": self._deterministic_reg, "fixed": self._fixed, } x = [self._deterministic_reg, self._endog_reg] x += [ex for ex in self._exog.values()] + [self._fixed] reg = np.column_stack(x) if hold_back is None: self._hold_back = int(self._maxlag) if self._hold_back < self._maxlag: raise ValueError( "hold_back must be >= the maximum lag of the endog and exog " "variables" ) reg = reg[self._hold_back :] if reg.shape[1] > reg.shape[0]: raise ValueError( f"The number of regressors ({reg.shape[1]}) including " "deterministics, lags of the endog, lags of the exogenous, " "and fixed regressors is larger than the sample available " f"for estimation ({reg.shape[0]})." ) return self.data.endog[self._hold_back :], reg def _construct_variable_names(self): """Construct model variables names""" y_name = self.data.ynames endog_lag_names = [f"{y_name}.L{i}" for i in self._lags] exog = self.data.orig_exog exog_names = {} for key in self._order: if isinstance(exog, np.ndarray): base = f"x{key}" else: base = str(key) lags = self._order[key] exog_names[key] = [f"{base}.L{lag}" for lag in lags] self._names = { "endog": endog_lag_names, "exog": exog_names, "deterministic": self._deterministic_reg.columns, "fixed": self._fixed_names, } x_names = list(self._deterministic_reg.columns) x_names += endog_lag_names for key in exog_names: x_names += exog_names[key] x_names += self._fixed_names return y_name, x_names def _forecasting_x( self, start: int, end: int, num_oos: int, exog: ArrayLike2D | None, exog_oos: ArrayLike2D | None, fixed: ArrayLike2D | None, fixed_oos: ArrayLike2D | None, ) -> np.ndarray: """Construct exog matrix for forecasts""" def pad_x(x: np.ndarray, pad: int) -> np.ndarray: if pad == 0: return x k = x.shape[1] return np.vstack([np.full((pad, k), np.nan), x]) pad = 0 if start >= self._hold_back else self._hold_back - start # Shortcut if all in-sample and no new data if (end + 1) < self.endog.shape[0] and exog is None and fixed is None: adjusted_start = max(start - self._hold_back, 0) return pad_x( self._x[adjusted_start : end + 1 - self._hold_back], pad ) # If anything changed, rebuild x array exog = self.data.exog if exog is None else np.asarray(exog) if exog_oos is not None: exog = np.vstack([exog, np.asarray(exog_oos)[:num_oos]]) fixed = self._fixed if fixed is None else np.asarray(fixed) if fixed_oos is not None: fixed = np.vstack([fixed, np.asarray(fixed_oos)[:num_oos]]) det = self._deterministics.in_sample() if num_oos: oos_det = self._deterministics.out_of_sample(num_oos) det = pd.concat([det, oos_det], axis=0) endog = self.data.endog if num_oos: endog = np.hstack([endog, np.full(num_oos, np.nan)]) x = [det] if self._lags: endog_reg = lagmat(endog, max(self._lags), original="ex") x.append(endog_reg[:, [lag - 1 for lag in self._lags]]) if self.ardl_order[1:]: if isinstance(self.data.orig_exog, pd.DataFrame): exog = pd.DataFrame(exog, columns=self.data.orig_exog.columns) exog = self._format_exog(exog, self._order) x.extend([np.asarray(arr) for arr in exog.values()]) if fixed.shape[1] > 0: x.append(fixed) _x = np.column_stack(x) _x[: self._hold_back] = np.nan return _x[start:]
[docs] def predict( self, params: ArrayLike1D, start: int | str | dt.datetime | pd.Timestamp | None = None, end: int | str | dt.datetime | pd.Timestamp | None = None, dynamic: bool = False, exog: NDArray | pd.DataFrame | None = None, exog_oos: NDArray | pd.DataFrame | None = None, fixed: NDArray | pd.DataFrame | None = None, fixed_oos: NDArray | pd.DataFrame | None = None, ): """ In-sample prediction and out-of-sample forecasting. Parameters ---------- params : array_like The fitted model parameters. start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out-of-sample prediction. Default is the last observation in the sample. Unlike standard python slices, end is inclusive so that all the predictions [start, start+1, ..., end-1, end] are returned. dynamic : {bool, int, str, datetime, Timestamp}, optional Integer offset relative to `start` at which to begin dynamic prediction. Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. Datetime-like objects are not interpreted as offsets. They are instead used to find the index location of `dynamic` which is then used to to compute the offset. exog : array_like A replacement exogenous array. Must have the same shape as the exogenous data array used when the model was created. exog_oos : array_like An array containing out-of-sample values of the exogenous variables. Must have the same number of columns as the exog used when the model was created, and at least as many rows as the number of out-of-sample forecasts. fixed : array_like A replacement fixed array. Must have the same shape as the fixed data array used when the model was created. fixed_oos : array_like An array containing out-of-sample values of the fixed variables. Must have the same number of columns as the fixed used when the model was created, and at least as many rows as the number of out-of-sample forecasts. Returns ------- predictions : {ndarray, Series} Array of out of in-sample predictions and / or out-of-sample forecasts. """ params, exog, exog_oos, start, end, num_oos = self._prepare_prediction( params, exog, exog_oos, start, end ) def check_exog(arr, name, orig, exact): if isinstance(orig, pd.DataFrame): if not isinstance(arr, pd.DataFrame): raise TypeError( f"{name} must be a DataFrame when the original exog " "was a DataFrame" ) if sorted(arr.columns) != sorted(self.data.orig_exog.columns): raise ValueError( f"{name} must have the same columns as the original " "exog" ) else: arr = array_like(arr, name, ndim=2, optional=False) if arr.ndim != 2 or arr.shape[1] != orig.shape[1]: raise ValueError( f"{name} must have the same number of columns as the " f"original data, {orig.shape[1]}" ) if exact and arr.shape[0] != orig.shape[0]: raise ValueError( f"{name} must have the same number of rows as the " f"original data ({n})." ) return arr n = self.data.endog.shape[0] if exog is not None: exog = check_exog(exog, "exog", self.data.orig_exog, True) if exog_oos is not None: exog_oos = check_exog( exog_oos, "exog_oos", self.data.orig_exog, False ) if fixed is not None: fixed = check_exog(fixed, "fixed", self._fixed, True) if fixed_oos is not None: fixed_oos = check_exog( np.asarray(fixed_oos), "fixed_oos", self._fixed, False ) # The maximum number of 1-step predictions that can be made, # which depends on the model and lags if self._fixed.shape[1] or not self._causal: max_1step = 0 else: max_1step = np.inf if not self._lags else min(self._lags) if self._order: min_exog = min([min(v) for v in self._order.values()]) max_1step = min(max_1step, min_exog) if num_oos > max_1step: if self._order and exog_oos is None: raise ValueError( "exog_oos must be provided when out-of-sample " "observations require values of the exog not in the " "original sample" ) elif self._order and (exog_oos.shape[0] + max_1step) < num_oos: raise ValueError( f"exog_oos must have at least {num_oos - max_1step} " f"observations to produce {num_oos} forecasts based on " "the model specification." ) if self._fixed.shape[1] and fixed_oos is None: raise ValueError( "fixed_oos must be provided when predicting " "out-of-sample observations" ) elif self._fixed.shape[1] and fixed_oos.shape[0] < num_oos: raise ValueError( f"fixed_oos must have at least {num_oos} observations " f"to produce {num_oos} forecasts." ) # Extend exog_oos if fcast is valid for horizon but no exog_oos given if self.exog is not None and exog_oos is None and num_oos: exog_oos = np.full((num_oos, self.exog.shape[1]), np.nan) if isinstance(self.data.orig_exog, pd.DataFrame): exog_oos = pd.DataFrame( exog_oos, columns=self.data.orig_exog.columns ) x = self._forecasting_x( start, end, num_oos, exog, exog_oos, fixed, fixed_oos ) if dynamic is False: dynamic_start = end + 1 - start else: dynamic_step = self._parse_dynamic(dynamic, start) dynamic_start = dynamic_step if start < self._hold_back: dynamic_start = max(dynamic_start, self._hold_back - start) fcasts = np.full(x.shape[0], np.nan) fcasts[:dynamic_start] = x[:dynamic_start] @ params offset = self._deterministic_reg.shape[1] for i in range(dynamic_start, fcasts.shape[0]): for j, lag in enumerate(self._lags): loc = i - lag if loc >= dynamic_start: val = fcasts[loc] else: # Actual data val = self.endog[start + loc] x[i, offset + j] = val fcasts[i] = x[i] @ params return self._wrap_prediction(fcasts, start, end + 1 + num_oos, 0)
[docs] @classmethod def from_formula( cls, formula: str, data: pd.DataFrame, lags: int | Sequence[int] | None = 0, order: _ARDLOrder = 0, trend: Literal["n", "c", "ct", "ctt"] = "n", *, causal: bool = False, seasonal: bool = False, deterministic: DeterministicProcess | None = None, hold_back: int | None = None, period: int | None = None, missing: Literal["none", "raise"] = "none", ) -> ARDL | UECM: """ Construct an ARDL from a formula Parameters ---------- formula : str Formula with form dependent ~ independent | fixed. See Examples below. data : DataFrame DataFrame containing the variables in the formula. lags : {int, list[int]} The number of lags to include in the model if an integer or the list of lag indices to include. For example, [1, 4] will only include lags 1 and 4 while lags=4 will include lags 1, 2, 3, and 4. order : {int, sequence[int], dict} If int, uses lags 0, 1, ..., order for all exog variables. If sequence[int], uses the ``order`` for all variables. If a dict, applies the lags series by series. If ``exog`` is anything other than a DataFrame, the keys are the column index of exog (e.g., 0, 1, ...). If a DataFrame, keys are column names. causal : bool, optional Whether to include lag 0 of exog variables. If True, only includes lags 1, 2, ... trend : {'n', 'c', 't', 'ct'}, optional The trend to include in the model: * 'n' - No trend. * 'c' - Constant only. * 't' - Time trend only. * 'ct' - Constant and time trend. The default is 'c'. seasonal : bool, optional Flag indicating whether to include seasonal dummies in the model. If seasonal is True and trend includes 'c', then the first period is excluded from the seasonal terms. deterministic : DeterministicProcess, optional A deterministic process. If provided, trend and seasonal are ignored. A warning is raised if trend is not "n" and seasonal is not False. hold_back : {None, int}, optional Initial observations to exclude from the estimation sample. If None, then hold_back is equal to the maximum lag in the model. Set to a non-zero value to produce comparable models with different lag length. For example, to compare the fit of a model with lags=3 and lags=1, set hold_back=3 which ensures that both models are estimated using observations 3,...,nobs. hold_back must be >= the maximum lag in the model. period : {None, int}, optional The period of the data. Only used if seasonal is True. This parameter can be omitted if using a pandas object for endog that contains a recognized frequency. missing : {"none", "drop", "raise"}, optional Available options are 'none', 'drop', and 'raise'. If 'none', no NaN checking is done. If 'drop', any observations with NaNs are dropped. If 'raise', an error is raised. Default is 'none'. Returns ------- ARDL The ARDL model instance Examples -------- A simple ARDL using the Danish data >>> from statsmodels.datasets.danish_data import load >>> from statsmodels.tsa.api import ARDL >>> data = load().data >>> mod = ARDL.from_formula("lrm ~ ibo", data, 2, 2) Fixed regressors can be specified using a | >>> mod = ARDL.from_formula("lrm ~ ibo | ide", data, 2, 2) """ index = data.index fixed_formula = None if "|" in formula: formula, fixed_formula = formula.split("|") fixed_formula = fixed_formula.strip() mod = OLS.from_formula(formula + " -1", data) exog = mod.data.orig_exog exog.index = index endog = mod.data.orig_endog endog.index = index if fixed_formula is not None: endog_name = formula.split("~")[0].strip() fixed_formula = f"{endog_name} ~ {fixed_formula} - 1" mod = OLS.from_formula(fixed_formula, data) fixed: pd.DataFrame | None = mod.data.orig_exog fixed.index = index else: fixed = None return cls( endog, lags, exog, order, trend=trend, fixed=fixed, causal=causal, seasonal=seasonal, deterministic=deterministic, hold_back=hold_back, period=period, missing=missing, )
doc = Docstring(ARDL.predict.__doc__) _predict_params = doc.extract_parameters( ["start", "end", "dynamic", "exog", "exog_oos", "fixed", "fixed_oos"], 8 )
[docs] class ARDLResults(AutoRegResults): """ Class to hold results from fitting an ARDL model. Parameters ---------- model : ARDL Reference to the model that is fit. params : ndarray The fitted parameters from the AR Model. cov_params : ndarray The estimated covariance matrix of the model parameters. normalized_cov_params : ndarray The array inv(dot(x.T,x)) where x contains the regressors in the model. scale : float, optional An estimate of the scale of the model. use_t : bool Whether use_t was set in fit """ _cache = {} # for scale setter def __init__( self, model: ARDL, params: np.ndarray, cov_params: np.ndarray, normalized_cov_params: Float64Array | None = None, scale: float = 1.0, use_t: bool = False, ): super().__init__( model, params, normalized_cov_params, scale, use_t=use_t ) self._cache = {} self._params = params self._nobs = model.nobs self._n_totobs = model.endog.shape[0] self._df_model = model.df_model self._ar_lags = model.ar_lags self._max_lag = 0 if self._ar_lags: self._max_lag = max(self._ar_lags) self._hold_back = self.model.hold_back self.cov_params_default = cov_params
[docs] @Appender(remove_parameters(ARDL.predict.__doc__, "params")) def predict( self, start: int | str | dt.datetime | pd.Timestamp | None = None, end: int | str | dt.datetime | pd.Timestamp | None = None, dynamic: bool = False, exog: NDArray | pd.DataFrame | None = None, exog_oos: NDArray | pd.DataFrame | None = None, fixed: NDArray | pd.DataFrame | None = None, fixed_oos: NDArray | pd.DataFrame | None = None, ): return self.model.predict( self._params, start=start, end=end, dynamic=dynamic, exog=exog, exog_oos=exog_oos, fixed=fixed, fixed_oos=fixed_oos, )
[docs] def forecast( self, steps: int = 1, exog: NDArray | pd.DataFrame | None = None, fixed: NDArray | pd.DataFrame | None = None, ) -> np.ndarray | pd.Series: """ Out-of-sample forecasts Parameters ---------- steps : {int, str, datetime}, default 1 If an integer, the number of steps to forecast from the end of the sample. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, steps must be an integer. exog : array_like, optional Exogenous values to use out-of-sample. Must have same number of columns as original exog data and at least `steps` rows fixed : array_like, optional Fixed values to use out-of-sample. Must have same number of columns as original fixed data and at least `steps` rows Returns ------- array_like Array of out of in-sample predictions and / or out-of-sample forecasts. See Also -------- ARDLResults.predict In- and out-of-sample predictions ARDLResults.get_prediction In- and out-of-sample predictions and confidence intervals """ start = self.model.data.orig_endog.shape[0] if isinstance(steps, (int, np.integer)): end = start + steps - 1 else: end = steps return self.predict( start=start, end=end, dynamic=False, exog_oos=exog, fixed_oos=fixed )
def _lag_repr(self) -> np.ndarray: """Returns poly repr of an AR, (1 -phi1 L -phi2 L^2-...)""" ar_lags = self._ar_lags if self._ar_lags is not None else [] k_ar = len(ar_lags) ar_params = np.zeros(self._max_lag + 1) ar_params[0] = 1 offset = self.model._deterministic_reg.shape[1] params = self._params[offset : offset + k_ar] for i, lag in enumerate(ar_lags): ar_params[lag] = -params[i] return ar_params
[docs] def get_prediction( self, start: int | str | dt.datetime | pd.Timestamp | None = None, end: int | str | dt.datetime | pd.Timestamp | None = None, dynamic: bool = False, exog: NDArray | pd.DataFrame | None = None, exog_oos: NDArray | pd.DataFrame | None = None, fixed: NDArray | pd.DataFrame | None = None, fixed_oos: NDArray | pd.DataFrame | None = None, ) -> np.ndarray | pd.Series: """ Predictions and prediction intervals Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out-of-sample prediction. Default is the last observation in the sample. Unlike standard python slices, end is inclusive so that all the predictions [start, start+1, ..., end-1, end] are returned. dynamic : {bool, int, str, datetime, Timestamp}, optional Integer offset relative to `start` at which to begin dynamic prediction. Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. Datetime-like objects are not interpreted as offsets. They are instead used to find the index location of `dynamic` which is then used to to compute the offset. exog : array_like A replacement exogenous array. Must have the same shape as the exogenous data array used when the model was created. exog_oos : array_like An array containing out-of-sample values of the exogenous variable. Must has the same number of columns as the exog used when the model was created, and at least as many rows as the number of out-of-sample forecasts. fixed : array_like A replacement fixed array. Must have the same shape as the fixed data array used when the model was created. fixed_oos : array_like An array containing out-of-sample values of the fixed variables. Must have the same number of columns as the fixed used when the model was created, and at least as many rows as the number of out-of-sample forecasts. Returns ------- PredictionResults Prediction results with mean and prediction intervals """ mean = self.predict( start=start, end=end, dynamic=dynamic, exog=exog, exog_oos=exog_oos, fixed=fixed, fixed_oos=fixed_oos, ) mean_var = np.full_like(mean, fill_value=self.sigma2) mean_var[np.isnan(mean)] = np.nan start = 0 if start is None else start end = self.model._index[-1] if end is None else end _, _, oos, _ = self.model._get_prediction_index(start, end) if oos > 0: ar_params = self._lag_repr() ma = arma2ma(ar_params, np.ones(1), lags=oos) mean_var[-oos:] = self.sigma2 * np.cumsum(ma**2) if isinstance(mean, pd.Series): mean_var = pd.Series(mean_var, index=mean.index) return PredictionResults(mean, mean_var)
[docs] @Substitution(predict_params=_predict_params) def plot_predict( self, start: int | str | dt.datetime | pd.Timestamp | None = None, end: int | str | dt.datetime | pd.Timestamp | None = None, dynamic: bool = False, exog: NDArray | pd.DataFrame | None = None, exog_oos: NDArray | pd.DataFrame | None = None, fixed: NDArray | pd.DataFrame | None = None, fixed_oos: NDArray | pd.DataFrame | None = None, alpha: float = 0.05, in_sample: bool = True, fig: matplotlib.figure.Figure = None, figsize: tuple[int, int] | None = None, ) -> matplotlib.figure.Figure: """ Plot in- and out-of-sample predictions Parameters ----------\n%(predict_params)s alpha : {float, None} The tail probability not covered by the confidence interval. Must be in (0, 1). Confidence interval is constructed assuming normally distributed shocks. If None, figure will not show the confidence interval. in_sample : bool Flag indicating whether to include the in-sample period in the plot. fig : Figure An existing figure handle. If not provided, a new figure is created. figsize: tuple[float, float] Tuple containing the figure size values. Returns ------- Figure Figure handle containing the plot. """ predictions = self.get_prediction( start=start, end=end, dynamic=dynamic, exog=exog, exog_oos=exog_oos, fixed=fixed, fixed_oos=fixed_oos, ) return self._plot_predictions( predictions, start, end, alpha, in_sample, fig, figsize )
[docs] def summary(self, alpha: float = 0.05) -> Summary: """ Summarize the Model Parameters ---------- alpha : float, optional Significance level for the confidence intervals. Returns ------- Summary This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary """ model = self.model title = model.__class__.__name__ + " Model Results" method = "Conditional MLE" # get sample start = self._hold_back if self.data.dates is not None: dates = self.data.dates sample = [dates[start].strftime("%m-%d-%Y")] sample += ["- " + dates[-1].strftime("%m-%d-%Y")] else: sample = [str(start), str(len(self.data.orig_endog))] model = self.model.__class__.__name__ + str(self.model.ardl_order) if self.model.seasonal: model = "Seas. " + model dep_name = str(self.model.endog_names) top_left = [ ("Dep. Variable:", [dep_name]), ("Model:", [model]), ("Method:", [method]), ("Date:", None), ("Time:", None), ("Sample:", [sample[0]]), ("", [sample[1]]), ] top_right = [ ("No. Observations:", [str(len(self.model.endog))]), ("Log Likelihood", ["%#5.3f" % self.llf]), ("S.D. of innovations", ["%#5.3f" % self.sigma2**0.5]), ("AIC", ["%#5.3f" % self.aic]), ("BIC", ["%#5.3f" % self.bic]), ("HQIC", ["%#5.3f" % self.hqic]), ] smry = Summary() smry.add_table_2cols( self, gleft=top_left, gright=top_right, title=title ) smry.add_table_params(self, alpha=alpha, use_t=False) return smry
class ARDLResultsWrapper(wrap.ResultsWrapper): _attrs = {} _wrap_attrs = wrap.union_dicts( tsa_model.TimeSeriesResultsWrapper._wrap_attrs, _attrs ) _methods = {} _wrap_methods = wrap.union_dicts( tsa_model.TimeSeriesResultsWrapper._wrap_methods, _methods ) wrap.populate_wrapper(ARDLResultsWrapper, ARDLResults)
[docs] class ARDLOrderSelectionResults(AROrderSelectionResults): """ Results from an ARDL order selection Contains the information criteria for all fitted model orders. """ def __init__(self, model, ics, trend, seasonal, period): _ics = (((0,), (0, 0, 0)),) super().__init__(model, _ics, trend, seasonal, period) def _to_dict(d): return d[0], dict(d[1:]) self._aic = pd.Series( {v[0]: _to_dict(k) for k, v in ics.items()}, dtype=object ) self._aic.index.name = self._aic.name = "AIC" self._aic = self._aic.sort_index() self._bic = pd.Series( {v[1]: _to_dict(k) for k, v in ics.items()}, dtype=object ) self._bic.index.name = self._bic.name = "BIC" self._bic = self._bic.sort_index() self._hqic = pd.Series( {v[2]: _to_dict(k) for k, v in ics.items()}, dtype=object ) self._hqic.index.name = self._hqic.name = "HQIC" self._hqic = self._hqic.sort_index() @property def dl_lags(self) -> dict[Hashable, list[int]]: """The lags of exogenous variables in the selected model""" return self._model.dl_lags
[docs] def ardl_select_order( endog: ArrayLike1D | ArrayLike2D, maxlag: int, exog: ArrayLike2D, maxorder: int | dict[Hashable, int], trend: Literal["n", "c", "ct", "ctt"] = "c", *, fixed: ArrayLike2D | None = None, causal: bool = False, ic: Literal["aic", "bic"] = "bic", glob: bool = False, seasonal: bool = False, deterministic: DeterministicProcess | None = None, hold_back: int | None = None, period: int | None = None, missing: Literal["none", "raise"] = "none", ) -> ARDLOrderSelectionResults: r""" ARDL order selection Parameters ---------- endog : array_like A 1-d endogenous response variable. The dependent variable. maxlag : int The maximum lag to consider for the endogenous variable. exog : array_like Exogenous variables to include in the model. Either a DataFrame or an 2-d array-like structure that can be converted to a NumPy array. maxorder : {int, dict} If int, sets a common max lag length for all exog variables. If a dict, then sets individual lag length. They keys are column names if exog is a DataFrame or column indices otherwise. trend : {'n', 'c', 't', 'ct'}, optional The trend to include in the model: * 'n' - No trend. * 'c' - Constant only. * 't' - Time trend only. * 'ct' - Constant and time trend. The default is 'c'. fixed : array_like Additional fixed regressors that are not lagged. causal : bool, optional Whether to include lag 0 of exog variables. If True, only includes lags 1, 2, ... ic : {"aic", "bic", "hqic"} The information criterion to use in model selection. glob : bool Whether to consider all possible submodels of the largest model or only if smaller order lags must be included if larger order lags are. If ``True``, the number of model considered is of the order 2**(maxlag + k * maxorder) assuming maxorder is an int. This can be very large unless k and maxorder are bot relatively small. If False, the number of model considered is of the order maxlag*maxorder**k which may also be substantial when k and maxorder are large. seasonal : bool, optional Flag indicating whether to include seasonal dummies in the model. If seasonal is True and trend includes 'c', then the first period is excluded from the seasonal terms. deterministic : DeterministicProcess, optional A deterministic process. If provided, trend and seasonal are ignored. A warning is raised if trend is not "n" and seasonal is not False. hold_back : {None, int}, optional Initial observations to exclude from the estimation sample. If None, then hold_back is equal to the maximum lag in the model. Set to a non-zero value to produce comparable models with different lag length. For example, to compare the fit of a model with lags=3 and lags=1, set hold_back=3 which ensures that both models are estimated using observations 3,...,nobs. hold_back must be >= the maximum lag in the model. period : {None, int}, optional The period of the data. Only used if seasonal is True. This parameter can be omitted if using a pandas object for endog that contains a recognized frequency. missing : {"none", "drop", "raise"}, optional Available options are 'none', 'drop', and 'raise'. If 'none', no NaN checking is done. If 'drop', any observations with NaNs are dropped. If 'raise', an error is raised. Default is 'none'. Returns ------- ARDLSelectionResults A results holder containing the selected model and the complete set of information criteria for all models fit. """ orig_hold_back = int_like(hold_back, "hold_back", optional=True) def compute_ics(y, x, df): if x.shape[1]: resid = y - x @ np.linalg.lstsq(x, y, rcond=None)[0] else: resid = y nobs = resid.shape[0] sigma2 = 1.0 / nobs * sumofsq(resid) llf = -nobs * (np.log(2 * np.pi * sigma2) + 1) / 2 res = SimpleNamespace( nobs=nobs, df_model=df + x.shape[1], sigma2=sigma2, llf=llf ) aic = call_cached_func(ARDLResults.aic, res) bic = call_cached_func(ARDLResults.bic, res) hqic = call_cached_func(ARDLResults.hqic, res) return aic, bic, hqic base = ARDL( endog, maxlag, exog, maxorder, trend, fixed=fixed, causal=causal, seasonal=seasonal, deterministic=deterministic, hold_back=hold_back, period=period, missing=missing, ) hold_back = base.hold_back blocks = base._blocks always = np.column_stack([blocks["deterministic"], blocks["fixed"]]) always = always[hold_back:] select = [] iter_orders = [] select.append(blocks["endog"][hold_back:]) iter_orders.append(list(range(blocks["endog"].shape[1] + 1))) var_names = [] for var in blocks["exog"]: block = blocks["exog"][var][hold_back:] select.append(block) iter_orders.append(list(range(block.shape[1] + 1))) var_names.append(var) y = base._y if always.shape[1]: pinv_always = np.linalg.pinv(always) for i in range(len(select)): x = select[i] select[i] = x - always @ (pinv_always @ x) y = y - always @ (pinv_always @ y) def perm_to_tuple(keys, perm): if perm == (): d = {k: 0 for k, _ in keys if k is not None} return (0,) + tuple((k, v) for k, v in d.items()) d = defaultdict(list) y_lags = [] for v in perm: key = keys[v] if key[0] is None: y_lags.append(key[1]) else: d[key[0]].append(key[1]) d = dict(d) if not y_lags or y_lags == [0]: y_lags = 0 else: y_lags = tuple(y_lags) for key in keys: if key[0] not in d and key[0] is not None: d[key[0]] = None for key in d: if d[key] is not None: d[key] = tuple(d[key]) return (y_lags,) + tuple((k, v) for k, v in d.items()) always_df = always.shape[1] ics = {} if glob: ar_lags = base.ar_lags if base.ar_lags is not None else [] keys = [(None, i) for i in ar_lags] for k, v in base._order.items(): keys += [(k, i) for i in v] x = np.column_stack([a for a in select]) all_columns = list(range(x.shape[1])) for i in range(x.shape[1]): for perm in combinations(all_columns, i): key = perm_to_tuple(keys, perm) ics[key] = compute_ics(y, x[:, perm], always_df) else: for io in product(*iter_orders): x = np.column_stack([a[:, : io[i]] for i, a in enumerate(select)]) key = [io[0] if io[0] else None] for j, val in enumerate(io[1:]): var = var_names[j] if causal: key.append((var, None if val == 0 else val)) else: key.append((var, val - 1 if val - 1 >= 0 else None)) key = tuple(key) ics[key] = compute_ics(y, x, always_df) index = {"aic": 0, "bic": 1, "hqic": 2}[ic] lowest = np.inf for key in ics: val = ics[key][index] if val < lowest: lowest = val selected_order = key exog_order = {k: v for k, v in selected_order[1:]} model = ARDL( endog, selected_order[0], exog, exog_order, trend, fixed=fixed, causal=causal, seasonal=seasonal, deterministic=deterministic, hold_back=orig_hold_back, period=period, missing=missing, ) return ARDLOrderSelectionResults(model, ics, trend, seasonal, period)
lags_descr = textwrap.wrap( "The number of lags of the endogenous variable to include in the model. " "Must be at least 1.", 71, ) lags_param = Parameter(name="lags", type="int", desc=lags_descr) order_descr = textwrap.wrap( "If int, uses lags 0, 1, ..., order for all exog variables. If a dict, " "applies the lags series by series. If ``exog`` is anything other than a " "DataFrame, the keys are the column index of exog (e.g., 0, 1, ...). If " "a DataFrame, keys are column names.", 71, ) order_param = Parameter(name="order", type="int, dict", desc=order_descr) from_formula_doc = Docstring(ARDL.from_formula.__doc__) from_formula_doc.replace_block("Summary", "Construct an UECM from a formula") from_formula_doc.remove_parameters("lags") from_formula_doc.remove_parameters("order") from_formula_doc.insert_parameters("data", lags_param) from_formula_doc.insert_parameters("lags", order_param) fit_doc = Docstring(ARDL.fit.__doc__) fit_doc.replace_block( "Returns", [Parameter("", "UECMResults", ["Estimation results."])] ) if fit_doc._ds is not None: see_also = fit_doc._ds["See Also"] see_also.insert( 0, ( [("statsmodels.tsa.ardl.ARDL", None)], ["Autoregressive distributed lag model estimation"], ), ) fit_doc.replace_block("See Also", see_also)
[docs] class UECM(ARDL): r""" Unconstrained Error Correlation Model(UECM) Parameters ---------- endog : array_like A 1-d endogenous response variable. The dependent variable. lags : {int, list[int]} The number of lags of the endogenous variable to include in the model. Must be at least 1. exog : array_like Exogenous variables to include in the model. Either a DataFrame or an 2-d array-like structure that can be converted to a NumPy array. order : {int, sequence[int], dict} If int, uses lags 0, 1, ..., order for all exog variables. If a dict, applies the lags series by series. If ``exog`` is anything other than a DataFrame, the keys are the column index of exog (e.g., 0, 1, ...). If a DataFrame, keys are column names. fixed : array_like Additional fixed regressors that are not lagged. causal : bool, optional Whether to include lag 0 of exog variables. If True, only includes lags 1, 2, ... trend : {'n', 'c', 't', 'ct'}, optional The trend to include in the model: * 'n' - No trend. * 'c' - Constant only. * 't' - Time trend only. * 'ct' - Constant and time trend. The default is 'c'. seasonal : bool, optional Flag indicating whether to include seasonal dummies in the model. If seasonal is True and trend includes 'c', then the first period is excluded from the seasonal terms. deterministic : DeterministicProcess, optional A deterministic process. If provided, trend and seasonal are ignored. A warning is raised if trend is not "n" and seasonal is not False. hold_back : {None, int}, optional Initial observations to exclude from the estimation sample. If None, then hold_back is equal to the maximum lag in the model. Set to a non-zero value to produce comparable models with different lag length. For example, to compare the fit of a model with lags=3 and lags=1, set hold_back=3 which ensures that both models are estimated using observations 3,...,nobs. hold_back must be >= the maximum lag in the model. period : {None, int}, optional The period of the data. Only used if seasonal is True. This parameter can be omitted if using a pandas object for endog that contains a recognized frequency. missing : {"none", "drop", "raise"}, optional Available options are 'none', 'drop', and 'raise'. If 'none', no NaN checking is done. If 'drop', any observations with NaNs are dropped. If 'raise', an error is raised. Default is 'none'. Notes ----- The full specification of an UECM is .. math :: \Delta Y_t = \delta_0 + \delta_1 t + \delta_2 t^2 + \sum_{i=1}^{s-1} \gamma_i I_{[(\mod(t,s) + 1) = i]} + \lambda_0 Y_{t-1} + \lambda_1 X_{1,t-1} + \ldots + \lambda_{k} X_{k,t-1} + \sum_{j=1}^{p-1} \phi_j \Delta Y_{t-j} + \sum_{l=1}^k \sum_{m=0}^{o_l-1} \beta_{l,m} \Delta X_{l, t-m} + Z_t \lambda + \epsilon_t where :math:`\delta_\bullet` capture trends, :math:`\gamma_\bullet` capture seasonal shifts, s is the period of the seasonality, p is the lag length of the endogenous variable, k is the number of exogenous variables :math:`X_{l}`, :math:`o_l` is included the lag length of :math:`X_{l}`, :math:`Z_t` are ``r`` included fixed regressors and :math:`\epsilon_t` is a white noise shock. If ``causal`` is ``True``, then the 0-th lag of the exogenous variables is not included and the sum starts at ``m=1``. See Also -------- statsmodels.tsa.ardl.ARDL Autoregressive distributed lag model estimation statsmodels.tsa.ar_model.AutoReg Autoregressive model estimation with optional exogenous regressors statsmodels.tsa.statespace.sarimax.SARIMAX Seasonal ARIMA model estimation with optional exogenous regressors statsmodels.tsa.arima.model.ARIMA ARIMA model estimation Examples -------- >>> from statsmodels.tsa.api import UECM >>> from statsmodels.datasets import danish_data >>> data = danish_data.load_pandas().data >>> lrm = data.lrm >>> exog = data[["lry", "ibo", "ide"]] A basic model where all variables have 3 lags included >>> UECM(data.lrm, 3, data[["lry", "ibo", "ide"]], 3) A dictionary can be used to pass custom lag orders >>> UECM(data.lrm, [1, 3], exog, {"lry": 1, "ibo": 3, "ide": 2}) Setting causal removes the 0-th lag from the exogenous variables >>> exog_lags = {"lry": 1, "ibo": 3, "ide": 2} >>> UECM(data.lrm, 3, exog, exog_lags, causal=True) When using NumPy arrays, the dictionary keys are the column index. >>> import numpy as np >>> lrma = np.asarray(lrm) >>> exoga = np.asarray(exog) >>> UECM(lrma, 3, exoga, {0: 1, 1: 3, 2: 2}) """ def __init__( self, endog: ArrayLike1D | ArrayLike2D, lags: int | None, exog: ArrayLike2D | None = None, order: _UECMOrder = 0, trend: Literal["n", "c", "ct", "ctt"] = "c", *, fixed: ArrayLike2D | None = None, causal: bool = False, seasonal: bool = False, deterministic: DeterministicProcess | None = None, hold_back: int | None = None, period: int | None = None, missing: Literal["none", "drop", "raise"] = "none", ) -> None: super().__init__( endog, lags, exog, order, trend=trend, fixed=fixed, seasonal=seasonal, causal=causal, hold_back=hold_back, period=period, missing=missing, deterministic=deterministic, ) self._results_class = UECMResults self._results_wrapper = UECMResultsWrapper def _check_lags( self, lags: int | Sequence[int] | None, hold_back: int | None ) -> tuple[list[int], int]: """Check lags value conforms to requirement""" if not (isinstance(lags, _INT_TYPES) or lags is None): raise TypeError("lags must be an integer or None") return super()._check_lags(lags, hold_back) def _check_order(self, order: _ARDLOrder): """Check order conforms to requirement""" if isinstance(order, Mapping): for k, v in order.items(): if not isinstance(v, _INT_TYPES) and v is not None: raise TypeError( "order values must be positive integers or None" ) elif not (isinstance(order, _INT_TYPES) or order is None): raise TypeError( "order must be None, a positive integer, or a dict " "containing positive integers or None" ) # TODO: Check order is >= 1 order = super()._check_order(order) if not order: raise ValueError( "Model must contain at least one exogenous variable" ) for key, val in order.items(): if val == [0]: raise ValueError( "All included exog variables must have a lag length >= 1" ) return order def _construct_variable_names(self): """Construct model variables names""" endog = self.data.orig_endog if isinstance(endog, pd.Series): y_base = endog.name or "y" elif isinstance(endog, pd.DataFrame): y_base = endog.squeeze().name or "y" else: y_base = "y" y_name = f"D.{y_base}" # 1. Deterministics x_names = list(self._deterministic_reg.columns) # 2. Levels x_names.append(f"{y_base}.L1") orig_exog = self.data.orig_exog exog_pandas = isinstance(orig_exog, pd.DataFrame) dexog_names = [] for key, val in self._order.items(): if val is not None: if exog_pandas: x_name = f"{key}.L1" else: x_name = f"x{key}.L1" x_names.append(x_name) lag_base = x_name[:-1] for lag in val[:-1]: dexog_names.append(f"D.{lag_base}{lag}") # 3. Lagged endog y_lags = max(self._lags) if self._lags else 0 dendog_names = [f"{y_name}.L{lag}" for lag in range(1, y_lags)] x_names.extend(dendog_names) x_names.extend(dexog_names) x_names.extend(self._fixed_names) return y_name, x_names def _construct_regressors( self, hold_back: int | None ) -> tuple[np.ndarray, np.ndarray]: """Construct and format model regressors""" # 1. Endogenous and endogenous lags self._maxlag = max(self._lags) if self._lags else 0 dendog = np.full_like(self.data.endog, np.nan) dendog[1:] = np.diff(self.data.endog, axis=0) dlag = max(0, self._maxlag - 1) self._endog_reg, self._endog = lagmat(dendog, dlag, original="sep") # 2. Deterministics self._deterministic_reg = self._deterministics.in_sample() # 3. Levels orig_exog = self.data.orig_exog exog_pandas = isinstance(orig_exog, pd.DataFrame) lvl = np.full_like(self.data.endog, np.nan) lvl[1:] = self.data.endog[:-1] lvls = [lvl.copy()] for key, val in self._order.items(): if val is not None: if exog_pandas: loc = orig_exog.columns.get_loc(key) else: loc = key lvl[1:] = self.data.exog[:-1, loc] lvls.append(lvl.copy()) self._levels = np.column_stack(lvls) # 4. exog Lags if exog_pandas: dexog = orig_exog.diff() else: dexog = np.full_like(self.data.exog, np.nan) dexog[1:] = np.diff(orig_exog, axis=0) adj_order = {} for key, val in self._order.items(): val = None if (val is None or val == [1]) else val[:-1] adj_order[key] = val self._exog = self._format_exog(dexog, adj_order) self._blocks = { "deterministic": self._deterministic_reg, "levels": self._levels, "endog": self._endog_reg, "exog": self._exog, "fixed": self._fixed, } blocks = [self._endog] for key, val in self._blocks.items(): if key != "exog": blocks.append(np.asarray(val)) else: for subval in val.values(): blocks.append(np.asarray(subval)) y = blocks[0] reg = np.column_stack(blocks[1:]) exog_maxlag = 0 for val in self._order.values(): exog_maxlag = max(exog_maxlag, max(val) if val is not None else 0) self._maxlag = max(self._maxlag, exog_maxlag) # Must be at least 1 since the endog is differenced self._maxlag = max(self._maxlag, 1) if hold_back is None: self._hold_back = int(self._maxlag) if self._hold_back < self._maxlag: raise ValueError( "hold_back must be >= the maximum lag of the endog and exog " "variables" ) reg = reg[self._hold_back :] if reg.shape[1] > reg.shape[0]: raise ValueError( f"The number of regressors ({reg.shape[1]}) including " "deterministics, lags of the endog, lags of the exogenous, " "and fixed regressors is larger than the sample available " f"for estimation ({reg.shape[0]})." ) return np.squeeze(y)[self._hold_back :], reg
[docs] @Appender(str(fit_doc)) def fit( self, *, cov_type: str = "nonrobust", cov_kwds: dict[str, Any] = None, use_t: bool = True, ) -> UECMResults: params, cov_params, norm_cov_params = self._fit( cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t ) res = UECMResults( self, params, cov_params, norm_cov_params, use_t=use_t ) return UECMResultsWrapper(res)
[docs] @classmethod def from_ardl( cls, ardl: ARDL, missing: Literal["none", "drop", "raise"] = "none" ): """ Construct a UECM from an ARDL model Parameters ---------- ardl : ARDL The ARDL model instance missing : {"none", "drop", "raise"}, default "none" How to treat missing observations. Returns ------- UECM The UECM model instance Notes ----- The lag requirements for a UECM are stricter than for an ARDL. Any variable that is included in the UECM must have a lag length of at least 1. Additionally, the included lags must be contiguous starting at 0 if non-causal or 1 if causal. """ err = ( "UECM can only be created from ARDL models that include all " "{var_typ} lags up to the maximum lag in the model." ) uecm_lags = {} dl_lags = ardl.dl_lags for key, val in dl_lags.items(): max_val = max(val) if len(dl_lags[key]) < (max_val + int(not ardl.causal)): raise ValueError(err.format(var_typ="exogenous")) uecm_lags[key] = max_val if ardl.ar_lags is None: ar_lags = None else: max_val = max(ardl.ar_lags) if len(ardl.ar_lags) != max_val: raise ValueError(err.format(var_typ="endogenous")) ar_lags = max_val return cls( ardl.data.orig_endog, ar_lags, ardl.data.orig_exog, uecm_lags, trend=ardl.trend, fixed=ardl.fixed, seasonal=ardl.seasonal, hold_back=ardl.hold_back, period=ardl.period, causal=ardl.causal, missing=missing, deterministic=ardl.deterministic, )
[docs] def predict( self, params: ArrayLike1D, start: int | str | dt.datetime | pd.Timestamp | None = None, end: int | str | dt.datetime | pd.Timestamp | None = None, dynamic: bool = False, exog: NDArray | pd.DataFrame | None = None, exog_oos: NDArray | pd.DataFrame | None = None, fixed: NDArray | pd.DataFrame | None = None, fixed_oos: NDArray | pd.DataFrame | None = None, ) -> np.ndarray: """ In-sample prediction and out-of-sample forecasting. Parameters ---------- params : array_like The fitted model parameters. start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out-of-sample prediction. Default is the last observation in the sample. Unlike standard python slices, end is inclusive so that all the predictions [start, start+1, ..., end-1, end] are returned. dynamic : {bool, int, str, datetime, Timestamp}, optional Integer offset relative to `start` at which to begin dynamic prediction. Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. Datetime-like objects are not interpreted as offsets. They are instead used to find the index location of `dynamic` which is then used to to compute the offset. exog : array_like A replacement exogenous array. Must have the same shape as the exogenous data array used when the model was created. exog_oos : array_like An array containing out-of-sample values of the exogenous variables. Must have the same number of columns as the exog used when the model was created, and at least as many rows as the number of out-of-sample forecasts. fixed : array_like A replacement fixed array. Must have the same shape as the fixed data array used when the model was created. fixed_oos : array_like An array containing out-of-sample values of the fixed variables. Must have the same number of columns as the fixed used when the model was created, and at least as many rows as the number of out-of-sample forecasts. Returns ------- predictions : {ndarray, Series} Array of out of in-sample predictions and / or out-of-sample forecasts. """ if dynamic is not False: raise NotImplementedError("dynamic forecasts are not supported") params, exog, exog_oos, start, end, num_oos = self._prepare_prediction( params, exog, exog_oos, start, end ) if num_oos != 0: raise NotImplementedError( "Out-of-sample forecasts are not supported" ) pred = np.full(self.endog.shape[0], np.nan) pred[-self._x.shape[0] :] = self._x @ params return pred[start : end + 1]
[docs] @classmethod @Appender(from_formula_doc.__str__().replace("ARDL", "UECM")) def from_formula( cls, formula: str, data: pd.DataFrame, lags: int | Sequence[int] | None = 0, order: _ARDLOrder = 0, trend: Literal["n", "c", "ct", "ctt"] = "n", *, causal: bool = False, seasonal: bool = False, deterministic: DeterministicProcess | None = None, hold_back: int | None = None, period: int | None = None, missing: Literal["none", "raise"] = "none", ) -> UECM: return super().from_formula( formula, data, lags, order, trend, causal=causal, seasonal=seasonal, deterministic=deterministic, hold_back=hold_back, period=period, missing=missing, )
[docs] class UECMResults(ARDLResults): """ Class to hold results from fitting an UECM model. Parameters ---------- model : UECM Reference to the model that is fit. params : ndarray The fitted parameters from the AR Model. cov_params : ndarray The estimated covariance matrix of the model parameters. normalized_cov_params : ndarray The array inv(dot(x.T,x)) where x contains the regressors in the model. scale : float, optional An estimate of the scale of the model. """ _cache: dict[str, Any] = {} # for scale setter def _ci_wrap( self, val: np.ndarray, name: str = "" ) -> NDArray | pd.Series | pd.DataFrame: if not isinstance(self.model.data, PandasData): return val ndet = self.model._blocks["deterministic"].shape[1] nlvl = self.model._blocks["levels"].shape[1] lbls = self.model.exog_names[: (ndet + nlvl)] for i in range(ndet, ndet + nlvl): lbl = lbls[i] if lbl.endswith(".L1"): lbls[i] = lbl[:-3] if val.ndim == 2: return pd.DataFrame(val, columns=lbls, index=lbls) return pd.Series(val, index=lbls, name=name) @cache_readonly def ci_params(self) -> np.ndarray | pd.Series: """Parameters of normalized cointegrating relationship""" ndet = self.model._blocks["deterministic"].shape[1] nlvl = self.model._blocks["levels"].shape[1] base = np.asarray(self.params)[ndet] return self._ci_wrap(self.params[: ndet + nlvl] / base, "ci_params") @cache_readonly def ci_bse(self) -> np.ndarray | pd.Series: """Standard Errors of normalized cointegrating relationship""" bse = np.sqrt(np.diag(self.ci_cov_params())) return self._ci_wrap(bse, "ci_bse") @cache_readonly def ci_tvalues(self) -> np.ndarray | pd.Series: """T-values of normalized cointegrating relationship""" ndet = self.model._blocks["deterministic"].shape[1] with warnings.catch_warnings(): warnings.simplefilter("ignore") tvalues = np.asarray(self.ci_params) / np.asarray(self.ci_bse) tvalues[ndet] = np.nan return self._ci_wrap(tvalues, "ci_tvalues") @cache_readonly def ci_pvalues(self) -> np.ndarray | pd.Series: """P-values of normalized cointegrating relationship""" with warnings.catch_warnings(): warnings.simplefilter("ignore") pvalues = 2 * (1 - stats.norm.cdf(np.abs(self.ci_tvalues))) return self._ci_wrap(pvalues, "ci_pvalues")
[docs] def ci_conf_int(self, alpha: float = 0.05) -> Float64Array | pd.DataFrame: alpha = float_like(alpha, "alpha") if self.use_t: q = stats.t(self.df_resid).ppf(1 - alpha / 2) else: q = stats.norm().ppf(1 - alpha / 2) p = self.ci_params se = self.ci_bse out = [p - q * se, p + q * se] if not isinstance(p, pd.Series): return np.column_stack(out) df = pd.concat(out, axis=1) df.columns = ["lower", "upper"] return df
[docs] def ci_summary(self, alpha: float = 0.05) -> Summary: def _ci(alpha=alpha): return np.asarray(self.ci_conf_int(alpha)) smry = Summary() ndet = self.model._blocks["deterministic"].shape[1] nlvl = self.model._blocks["levels"].shape[1] exog_names = list(self.model.exog_names)[: (ndet + nlvl)] model = SimpleNamespace( endog_names=self.model.endog_names, exog_names=exog_names ) data = SimpleNamespace( params=self.ci_params, bse=self.ci_bse, tvalues=self.ci_tvalues, pvalues=self.ci_pvalues, conf_int=_ci, model=model, ) tab = summary_params(data) tab.title = "Cointegrating Vector" smry.tables.append(tab) return smry
@cache_readonly def ci_resids(self) -> np.ndarray | pd.Series: d = self.model._blocks["deterministic"] exog = self.model.data.orig_exog is_pandas = isinstance(exog, pd.DataFrame) exog = exog if is_pandas else self.model.exog cols = [np.asarray(d), self.model.endog] for key, value in self.model.dl_lags.items(): if value is not None: if is_pandas: cols.append(np.asarray(exog[key])) else: cols.append(exog[:, key]) ci_x = np.column_stack(cols) resids = ci_x @ self.ci_params if not isinstance(self.model.data, PandasData): return resids index = self.model.data.orig_endog.index return pd.Series(resids, index=index, name="ci_resids")
[docs] def ci_cov_params(self) -> Float64Array | pd.DataFrame: """Covariance of normalized of cointegrating relationship""" ndet = self.model._blocks["deterministic"].shape[1] nlvl = self.model._blocks["levels"].shape[1] loc = list(range(ndet + nlvl)) cov = self.cov_params() cov_a = np.asarray(cov) ci_cov = cov_a[np.ix_(loc, loc)] m = ci_cov.shape[0] params = np.asarray(self.params)[: ndet + nlvl] base = params[ndet] d = np.zeros((m, m)) for i in range(m): if i == ndet: continue d[i, i] = 1 / base d[i, ndet] = -params[i] / (base**2) ci_cov = d @ ci_cov @ d.T return self._ci_wrap(ci_cov)
def _lag_repr(self): """Returns poly repr of an AR, (1 -phi1 L -phi2 L^2-...)""" # TODO
[docs] def bounds_test( self, case: Literal[1, 2, 3, 4, 5], cov_type: str = "nonrobust", cov_kwds: dict[str, Any] = None, use_t: bool = True, asymptotic: bool = True, nsim: int = 100_000, seed: int | Sequence[int] | np.random.RandomState | np.random.Generator | None = None, ): r""" Cointegration bounds test of Pesaran, Shin, and Smith Parameters ---------- case : {1, 2, 3, 4, 5} One of the cases covered in the PSS test. cov_type : str The covariance estimator to use. The asymptotic distribution of the PSS test has only been established in the homoskedastic case, which is the default. The most common choices are listed below. Supports all covariance estimators that are available in ``OLS.fit``. * 'nonrobust' - The class OLS covariance estimator that assumes homoskedasticity. * 'HC0', 'HC1', 'HC2', 'HC3' - Variants of White's (or Eiker-Huber-White) covariance estimator. `HC0` is the standard implementation. The other make corrections to improve the finite sample performance of the heteroskedasticity robust covariance estimator. * 'HAC' - Heteroskedasticity-autocorrelation robust covariance estimation. Supports cov_kwds. - `maxlags` integer (required) : number of lags to use. - `kernel` callable or str (optional) : kernel currently available kernels are ['bartlett', 'uniform'], default is Bartlett. - `use_correction` bool (optional) : If true, use small sample correction. cov_kwds : dict, optional A dictionary of keyword arguments to pass to the covariance estimator. `nonrobust` and `HC#` do not support cov_kwds. use_t : bool, optional A flag indicating that small-sample corrections should be applied to the covariance estimator. asymptotic : bool Flag indicating whether to use asymptotic critical values which were computed by simulation (True, default) or to simulate a sample-size specific set of critical values. Tables are only available for up to 10 components in the cointegrating relationship, so if more variables are included then simulation is always used. The simulation computed the test statistic under and assumption that the residuals are homoskedastic. nsim : int Number of simulations to run when computing exact critical values. Only used if ``asymptotic`` is ``True``. seed : {None, int, sequence[int], RandomState, Generator}, optional Seed to use when simulating critical values. Must be provided if reproducible critical value and p-values are required when ``asymptotic`` is ``False``. Returns ------- BoundsTestResult Named tuple containing ``stat``, ``crit_vals``, ``p_values``, ``null` and ``alternative``. The statistic is the F-type test statistic favored in PSS. Notes ----- The PSS bounds test has 5 cases which test the coefficients on the level terms in the model .. math:: \Delta Y_{t}=\delta_{0} + \delta_{1}t + Z_{t-1}\beta + \sum_{j=0}^{P}\Delta X_{t-j}\Gamma + \epsilon_{t} where :math:`Z_{t-1}` contains both :math:`Y_{t-1}` and :math:`X_{t-1}`. The cases determine which deterministic terms are included in the model and which are tested as part of the test. Cases: 1. No deterministic terms 2. Constant included in both the model and the test 3. Constant included in the model but not in the test 4. Constant and trend included in the model, only trend included in the test 5. Constant and trend included in the model, neither included in the test The test statistic is a Wald-type quadratic form test that all of the coefficients in :math:`\beta` are 0 along with any included deterministic terms, which depends on the case. The statistic returned is an F-type test statistic which is the standard quadratic form test statistic divided by the number of restrictions. References ---------- .. [*] Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 16(3), 289-326. """ model = self.model trend: Literal["n", "c", "ct"] if case == 1: trend = "n" elif case in (2, 3): trend = "c" else: trend = "ct" order = {key: max(val) for key, val in model._order.items()} uecm = UECM( model.data.endog, max(model.ar_lags), model.data.orig_exog, order=order, causal=model.causal, trend=trend, ) res = uecm.fit(cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t) cov = res.cov_params() nvar = len(res.model.ardl_order) if case == 1: rest = np.arange(nvar) elif case == 2: rest = np.arange(nvar + 1) elif case == 3: rest = np.arange(1, nvar + 1) elif case == 4: rest = np.arange(1, nvar + 2) elif case == 5: rest = np.arange(2, nvar + 2) r = np.zeros((rest.shape[0], cov.shape[1])) for i, loc in enumerate(rest): r[i, loc] = 1 vcv = r @ cov @ r.T coef = r @ res.params stat = coef.T @ np.linalg.inv(vcv) @ coef / r.shape[0] k = nvar if asymptotic and k <= 10: cv = pss_critical_values.crit_vals key = (k, case) upper = cv[key + (True,)] lower = cv[key + (False,)] crit_vals = pd.DataFrame( {"lower": lower, "upper": upper}, index=pss_critical_values.crit_percentiles, ) crit_vals.index.name = "percentile" p_values = pd.Series( { "lower": _pss_pvalue(stat, k, case, False), "upper": _pss_pvalue(stat, k, case, True), } ) else: nobs = res.resid.shape[0] crit_vals, p_values = _pss_simulate( stat, k, case, nobs=nobs, nsim=nsim, seed=seed ) return BoundsTestResult( stat, crit_vals, p_values, "No Cointegration", "Possible Cointegration", )
def _pss_pvalue(stat: float, k: int, case: int, i1: bool) -> float: key = (k, case, i1) large_p = pss_critical_values.large_p[key] small_p = pss_critical_values.small_p[key] threshold = pss_critical_values.stat_star[key] log_stat = np.log(stat) p = small_p if stat > threshold else large_p x = [log_stat**i for i in range(len(p))] return 1 - stats.norm.cdf(x @ np.array(p)) def _pss_simulate( stat: float, k: int, case: Literal[1, 2, 3, 4, 5], nobs: int, nsim: int, seed: int | Sequence[int] | np.random.RandomState | np.random.Generator | None, ) -> tuple[pd.DataFrame, pd.Series]: rs: np.random.RandomState | np.random.Generator if not isinstance(seed, np.random.RandomState): rs = np.random.default_rng(seed) else: assert isinstance(seed, np.random.RandomState) rs = seed def _vectorized_ols_resid(rhs, lhs): rhs_t = np.transpose(rhs, [0, 2, 1]) xpx = np.matmul(rhs_t, rhs) xpy = np.matmul(rhs_t, lhs) b = np.linalg.solve(xpx, xpy) return np.squeeze(lhs - np.matmul(rhs, b)) block_size = 100_000_000 // (8 * nobs * k) remaining = nsim loc = 0 f_upper = np.empty(nsim) f_lower = np.empty(nsim) while remaining > 0: to_do = min(remaining, block_size) e = rs.standard_normal((to_do, nobs + 1, k)) y = np.cumsum(e[:, :, :1], axis=1) x_upper = np.cumsum(e[:, :, 1:], axis=1) x_lower = e[:, :, 1:] lhs = np.diff(y, axis=1) if case in (2, 3): rhs = np.empty((to_do, nobs, k + 1)) rhs[:, :, -1] = 1 elif case in (4, 5): rhs = np.empty((to_do, nobs, k + 2)) rhs[:, :, -2] = np.arange(nobs, dtype=float) rhs[:, :, -1] = 1 else: rhs = np.empty((to_do, nobs, k)) rhs[:, :, :1] = y[:, :-1] rhs[:, :, 1:k] = x_upper[:, :-1] u = _vectorized_ols_resid(rhs, lhs) df = rhs.shape[1] - rhs.shape[2] s2 = (u**2).sum(1) / df if case in (3, 4): rhs_r = rhs[:, :, -1:] elif case == 5: # case 5 rhs_r = rhs[:, :, -2:] if case in (3, 4, 5): ur = _vectorized_ols_resid(rhs_r, lhs) nrest = rhs.shape[-1] - rhs_r.shape[-1] else: ur = np.squeeze(lhs) nrest = rhs.shape[-1] f = ((ur**2).sum(1) - (u**2).sum(1)) / nrest f /= s2 f_upper[loc : loc + to_do] = f # Lower rhs[:, :, 1:k] = x_lower[:, :-1] u = _vectorized_ols_resid(rhs, lhs) s2 = (u**2).sum(1) / df if case in (3, 4): rhs_r = rhs[:, :, -1:] elif case == 5: # case 5 rhs_r = rhs[:, :, -2:] if case in (3, 4, 5): ur = _vectorized_ols_resid(rhs_r, lhs) nrest = rhs.shape[-1] - rhs_r.shape[-1] else: ur = np.squeeze(lhs) nrest = rhs.shape[-1] f = ((ur**2).sum(1) - (u**2).sum(1)) / nrest f /= s2 f_lower[loc : loc + to_do] = f loc += to_do remaining -= to_do crit_percentiles = pss_critical_values.crit_percentiles crit_vals = pd.DataFrame( { "lower": np.percentile(f_lower, crit_percentiles), "upper": np.percentile(f_upper, crit_percentiles), }, index=crit_percentiles, ) crit_vals.index.name = "percentile" p_values = pd.Series( {"lower": (stat < f_lower).mean(), "upper": (stat < f_upper).mean()} ) return crit_vals, p_values class UECMResultsWrapper(wrap.ResultsWrapper): _attrs = {} _wrap_attrs = wrap.union_dicts( tsa_model.TimeSeriesResultsWrapper._wrap_attrs, _attrs ) _methods = {} _wrap_methods = wrap.union_dicts( tsa_model.TimeSeriesResultsWrapper._wrap_methods, _methods ) wrap.populate_wrapper(UECMResultsWrapper, UECMResults)

Last update: Oct 03, 2024