Trends and cycles in unemployment¶
Here we consider three methods for separating a trend and cycle in economic data. Supposing we have a time series
where
This notebook demonstrates applying these models to separate trend from cycle in the U.S. unemployment rate.
[1]:
%matplotlib inline
[2]:
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
[3]:
from pandas_datareader.data import DataReader
endog = DataReader('UNRATE', 'fred', start='1954-01-01')
endog.index.freq = endog.index.inferred_freq
Hodrick-Prescott (HP) filter¶
The first method is the Hodrick-Prescott filter, which can be applied to a data series in a very straightforward method. Here we specify the parameter
[4]:
hp_cycle, hp_trend = sm.tsa.filters.hpfilter(endog, lamb=129600)
Unobserved components and ARIMA model (UC-ARIMA)¶
The next method is an unobserved components model, where the trend is modeled as a random walk and the cycle is modeled with an ARIMA model - in particular, here we use an AR(4) model. The process for the time series can be written as:
where
[5]:
mod_ucarima = sm.tsa.UnobservedComponents(endog, 'rwalk', autoregressive=4)
# Here the powell method is used, since it achieves a
# higher loglikelihood than the default L-BFGS method
res_ucarima = mod_ucarima.fit(method='powell', disp=False)
print(res_ucarima.summary())
Unobserved Components Results
==============================================================================
Dep. Variable: UNRATE No. Observations: 848
Model: random walk Log Likelihood -463.716
+ AR(4) AIC 939.431
Date: Thu, 03 Oct 2024 BIC 967.881
Time: 15:46:35 HQIC 950.331
Sample: 01-01-1954
- 08-01-2024
Covariance Type: opg
================================================================================
coef std err z P>|z| [0.025 0.975]
--------------------------------------------------------------------------------
sigma2.level 5.487e-08 0.011 4.92e-06 1.000 -0.022 0.022
sigma2.ar 0.1746 0.015 11.697 0.000 0.145 0.204
ar.L1 1.0256 0.019 54.095 0.000 0.988 1.063
ar.L2 -0.1059 0.016 -6.600 0.000 -0.137 -0.074
ar.L3 0.0756 0.023 3.271 0.001 0.030 0.121
ar.L4 -0.0267 0.019 -1.421 0.155 -0.064 0.010
===================================================================================
Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 6657871.78
Prob(Q): 0.97 Prob(JB): 0.00
Heteroskedasticity (H): 9.13 Skew: 17.46
Prob(H) (two-sided): 0.00 Kurtosis: 435.94
===================================================================================
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
Unobserved components with stochastic cycle (UC)¶
The final method is also an unobserved components model, but where the cycle is modeled explicitly.
[6]:
mod_uc = sm.tsa.UnobservedComponents(
endog, 'rwalk',
cycle=True, stochastic_cycle=True, damped_cycle=True,
)
# Here the powell method gets close to the optimum
res_uc = mod_uc.fit(method='powell', disp=False)
# but to get to the highest loglikelihood we do a
# second round using the L-BFGS method.
res_uc = mod_uc.fit(res_uc.params, disp=False)
print(res_uc.summary())
Unobserved Components Results
=====================================================================================
Dep. Variable: UNRATE No. Observations: 848
Model: random walk Log Likelihood -472.478
+ damped stochastic cycle AIC 952.956
Date: Thu, 03 Oct 2024 BIC 971.913
Time: 15:46:37 HQIC 960.219
Sample: 01-01-1954
- 08-01-2024
Covariance Type: opg
===================================================================================
coef std err z P>|z| [0.025 0.975]
-----------------------------------------------------------------------------------
sigma2.level 0.0183 0.033 0.552 0.581 -0.047 0.083
sigma2.cycle 0.1539 0.032 4.740 0.000 0.090 0.217
frequency.cycle 0.0437 0.029 1.495 0.135 -0.014 0.101
damping.cycle 0.9562 0.019 51.074 0.000 0.919 0.993
===================================================================================
Ljung-Box (L1) (Q): 1.53 Jarque-Bera (JB): 6560083.72
Prob(Q): 0.22 Prob(JB): 0.00
Heteroskedasticity (H): 9.47 Skew: 17.32
Prob(H) (two-sided): 0.00 Kurtosis: 433.26
===================================================================================
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
Graphical comparison¶
The output of each of these models is an estimate of the trend component
[7]:
fig, axes = plt.subplots(2, figsize=(13,5));
axes[0].set(title='Level/trend component')
axes[0].plot(endog.index, res_uc.level.smoothed, label='UC')
axes[0].plot(endog.index, res_ucarima.level.smoothed, label='UC-ARIMA(2,0)')
axes[0].plot(hp_trend, label='HP Filter')
axes[0].legend(loc='upper left')
axes[0].grid()
axes[1].set(title='Cycle component')
axes[1].plot(endog.index, res_uc.cycle.smoothed, label='UC')
axes[1].plot(endog.index, res_ucarima.autoregressive.smoothed, label='UC-ARIMA(2,0)')
axes[1].plot(hp_cycle, label='HP Filter')
axes[1].legend(loc='upper left')
axes[1].grid()
fig.tight_layout();
