statsmodels.discrete.conditional_models.ConditionalMNLogit¶
-
class statsmodels.discrete.conditional_models.ConditionalMNLogit(endog, exog, missing=
'none'
, **kwargs)[source]¶ Fit a conditional multinomial logit model to grouped data.
- Parameters:¶
- endogarray_like
The dependent variable, must be integer-valued, coded 0, 1, …, c-1, where c is the number of response categories.
- exogarray_like
The independent variables.
- groupsarray_like
Codes defining the groups. This is a required keyword parameter.
- Attributes:¶
endog_names
Names of endogenous variables.
exog_names
Names of exogenous variables.
Notes
Equivalent to femlogit in Stata.
References
Gary Chamberlain (1980). Analysis of covariance with qualitative data. The Review of Economic Studies. Vol. 47, No. 1, pp. 225-238.
Methods
fit
([start_params, method, maxiter, ...])Fit method for likelihood based models
fit_regularized
([method, alpha, ...])Return a regularized fit to a linear regression model.
from_formula
(formula, data[, subset, drop_cols])Create a Model from a formula and dataframe.
hessian
(params)The Hessian matrix of the model.
information
(params)Fisher information matrix of model.
Initialize (possibly re-initialize) a Model instance.
loglike
(params)Log-likelihood of model.
predict
(params[, exog])After a model has been fit predict returns the fitted values.
score
(params)Score vector of model.
Properties
Names of endogenous variables.
Names of exogenous variables.