statsmodels.othermod.betareg.BetaResults¶
- class statsmodels.othermod.betareg.BetaResults(model, mlefit)[source]¶
Results class for Beta regression
This class inherits from GenericLikelihoodModelResults and not all inherited methods might be appropriate in this case.
- Attributes:¶
- aic
Akaike information criterion
- bic
Bayesian information criterion
- bse
The standard errors of the parameter estimates.
- bsejac
standard deviation of parameter estimates based on covjac
- bsejhj
standard deviation of parameter estimates based on covHJH
- covjac
covariance of parameters based on outer product of jacobian of log-likelihood
- covjhj
covariance of parameters based on HJJH
dot product of Hessian, Jacobian, Jacobian, Hessian of likelihood
name should be covhjh
- df_modelwc
Model WC
- fitted_precision
In-sample predicted precision
- fittedvalues
In-sample predicted mean, conditional expectation.
- hessv
cached Hessian of log-likelihood
- llf
Log-likelihood of model
- llnull
Value of the constant-only loglikelihood
- llr
Likelihood ratio chi-squared statistic; -2*(llnull - llf)
- llr_pvalue
The chi-squared probability of getting a log-likelihood ratio statistic greater than llr. llr has a chi-squared distribution with degrees of freedom df_model.
- prsquared
Cox-Snell Likelihood-Ratio pseudo-R-squared.
1 - exp((llnull - .llf) * (2 / nobs))
- pvalues
The two-tailed p values for the t-stats of the params.
- resid
Response residual
- resid_pearson
Pearson standardize residual
- score_obsv
cached Jacobian of log-likelihood
- tvalues
Return the t-statistic for a given parameter estimate.
use_t
Flag indicating to use the Student’s distribution in inference.
Methods
bootstrap
(*args, **kwargs)simple bootstrap to get mean and variance of estimator
conf_int
([alpha, cols])Construct confidence interval for the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, ...])Compute the variance/covariance matrix.
f_test
(r_matrix[, cov_p, invcov])Compute the F-test for a joint linear hypothesis.
get_distribution
([exog, exog_precision, ...])Return a instance of the predictive distribution.
get_distribution_params
([exog, ...])Return distribution parameters converted from model prediction.
Get an instance of MLEInfluence with influence and outlier measures
get_nlfun
(fun)This is not Implemented
get_prediction
([exog, which, transform, ...])Compute prediction results when endpoint transformation is valid.
initialize
(model, params, **kwargs)Initialize (possibly re-initialize) a Results instance.
load
(fname)Load a pickled results instance
See specific model class docstring
predict
([exog, transform])Call self.model.predict with self.params as the first argument.
pseudo_rsquared
([kind])McFadden's pseudo-R-squared.
Remove data arrays, all nobs arrays from result and model.
save
(fname[, remove_data])Save a pickle of this instance.
set_null_options
([llnull, attach_results])Set the fit options for the Null (constant-only) model.
summary
([yname, xname, title, alpha])Summarize the Regression Results
t_test
(r_matrix[, cov_p, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q.
t_test_pairwise
(term_name[, method, alpha, ...])Perform pairwise t_test with multiple testing corrected p-values.
wald_test
(r_matrix[, cov_p, invcov, use_f, ...])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, ...])Compute a sequence of Wald tests for terms over multiple columns.
Properties
Akaike information criterion
Bayesian information criterion
The standard errors of the parameter estimates.
standard deviation of parameter estimates based on covjac
standard deviation of parameter estimates based on covHJH
covariance of parameters based on outer product of jacobian of log-likelihood
covariance of parameters based on HJJH
Model WC
In-sample predicted precision
In-sample predicted mean, conditional expectation.
cached Hessian of log-likelihood
Log-likelihood of model
Value of the constant-only loglikelihood
Likelihood ratio chi-squared statistic; -2*(llnull - llf)
The chi-squared probability of getting a log-likelihood ratio statistic greater than llr.
Cox-Snell Likelihood-Ratio pseudo-R-squared.
The two-tailed p values for the t-stats of the params.
Response residual
Pearson standardize residual
cached Jacobian of log-likelihood
Return the t-statistic for a given parameter estimate.
Flag indicating to use the Student's distribution in inference.