statsmodels.tsa.base.prediction.PredictionResults¶
-
class statsmodels.tsa.base.prediction.PredictionResults(predicted_mean, var_pred_mean, dist=
None
, df=None
, row_labels=None
)[source]¶ Prediction results
- Parameters:¶
- predicted_mean{
ndarray
,Series
,DataFrame
} The predicted mean values
- var_pred_mean{
ndarray
,Series
,DataFrame
} The variance of the predicted mean values
- dist{
None
, “norm”, “t”,rv_frozen
} The distribution to use when constructing prediction intervals. Default is normal.
- df
int
,optional
The degree of freedom parameter for the t. Not used if dist is None, “norm” or a callable.
- row_labels{
Sequence
[Hashable
],pd.Index
} Row labels to use for the summary frame. If None, attempts to read the index of
predicted_mean
- predicted_mean{
- Attributes:¶
predicted_mean
The predicted mean
row_labels
The row labels used in pandas-types.
se_mean
The standard deviation of the predicted mean
tvalues
The ratio of the predicted mean to its standard deviation
var_pred_mean
The variance of the predicted mean
Methods
conf_int
([alpha])Confidence interval construction for the predicted mean.
summary_frame
([alpha])Summary frame of mean, variance and confidence interval.
t_test
([value, alternative])z- or t-test for hypothesis that mean is equal to value
Properties
The predicted mean
The row labels used in pandas-types.
The standard deviation of the predicted mean
The ratio of the predicted mean to its standard deviation
The variance of the predicted mean