statsmodels.tsa.statespace.mlemodel.MLEResults.apply¶
-
MLEResults.apply(endog, exog=
None
, refit=False
, fit_kwargs=None
, copy_initialization=False
, **kwargs)[source]¶ Apply the fitted parameters to new data unrelated to the original data
Creates a new result object using the current fitted parameters, applied to a completely new dataset that is assumed to be unrelated to the model’s original data. The new results can then be used for analysis or forecasting.
- Parameters:¶
- endogarray_like
New observations from the modeled time-series process.
- exogarray_like,
optional
New observations of exogenous regressors, if applicable.
- refitbool,
optional
Whether to re-fit the parameters, using the new dataset. Default is False (so parameters from the current results object are used to create the new results object).
- copy_initializationbool,
optional
Whether or not to copy the initialization from the current results set to the new model. Default is False
- fit_kwargs
dict
,optional
Keyword arguments to pass to fit (if refit=True) or filter / smooth.
- **kwargs
Keyword arguments may be used to modify model specification arguments when created the new model object.
- Returns:¶
results
Updated Results object, that includes results only for the new dataset.
See also
Notes
The endog argument to this method should consist of new observations that are not necessarily related to the original model’s endog dataset. For observations that continue that original dataset by follow directly after its last element, see the append and extend methods.
Examples
>>> index = pd.period_range(start='2000', periods=2, freq='Y') >>> original_observations = pd.Series([1.2, 1.5], index=index) >>> mod = sm.tsa.SARIMAX(original_observations) >>> res = mod.fit() >>> print(res.params) ar.L1 0.9756 sigma2 0.0889 dtype: float64 >>> print(res.fittedvalues) 2000 0.0000 2001 1.1707 Freq: A-DEC, dtype: float64 >>> print(res.forecast(1)) 2002 1.4634 Freq: A-DEC, dtype: float64
>>> new_index = pd.period_range(start='1980', periods=3, freq='Y') >>> new_observations = pd.Series([1.4, 0.3, 1.2], index=new_index) >>> new_res = res.apply(new_observations) >>> print(new_res.params) ar.L1 0.9756 sigma2 0.0889 dtype: float64 >>> print(new_res.fittedvalues) 1980 1.1707 1981 1.3659 1982 0.2927 Freq: A-DEC, dtype: float64 Freq: A-DEC, dtype: float64 >>> print(new_res.forecast(1)) 1983 1.1707 Freq: A-DEC, dtype: float64