Source code for statsmodels.genmod._prediction

# -*- coding: utf-8 -*-
"""
Created on Fri Dec 19 11:29:18 2014

Author: Josef Perktold
License: BSD-3

"""

import numpy as np
from scipy import stats


# this is similar to ContrastResults after t_test, partially copied and adjusted
[docs]class PredictionResults(object): def __init__(self, predicted_mean, var_pred_mean, var_resid=None, df=None, dist=None, row_labels=None, linpred=None, link=None): # TODO: is var_resid used? drop from arguments? self.predicted_mean = predicted_mean self.var_pred_mean = var_pred_mean self.df = df self.var_resid = var_resid self.row_labels = row_labels self.linpred = linpred self.link = link if dist is None or dist == 'norm': self.dist = stats.norm self.dist_args = () elif dist == 't': self.dist = stats.t self.dist_args = (self.df,) else: self.dist = dist self.dist_args = () @property def se_obs(self): raise NotImplementedError return np.sqrt(self.var_pred_mean + self.var_resid) @property def se_mean(self): return np.sqrt(self.var_pred_mean) @property def tvalues(self): return self.predicted_mean / self.se_mean
[docs] def t_test(self, value=0, alternative='two-sided'): '''z- or t-test for hypothesis that mean is equal to value Parameters ---------- value : array_like value under the null hypothesis alternative : string 'two-sided', 'larger', 'smaller' Returns ------- stat : ndarray test statistic pvalue : ndarray p-value of the hypothesis test, the distribution is given by the attribute of the instance, specified in `__init__`. Default if not specified is the normal distribution. ''' # assumes symmetric distribution stat = (self.predicted_mean - value) / self.se_mean if alternative in ['two-sided', '2-sided', '2s']: pvalue = self.dist.sf(np.abs(stat), *self.dist_args)*2 elif alternative in ['larger', 'l']: pvalue = self.dist.sf(stat, *self.dist_args) elif alternative in ['smaller', 's']: pvalue = self.dist.cdf(stat, *self.dist_args) else: raise ValueError('invalid alternative') return stat, pvalue
[docs] def conf_int(self, method='endpoint', alpha=0.05, **kwds): """ Returns the confidence interval of the value, `effect` of the constraint. This is currently only available for t and z tests. Parameters ---------- alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. kwds : extra keyword arguments currently ignored, only for compatibility, consistent signature Returns ------- ci : ndarray, (k_constraints, 2) The array has the lower and the upper limit of the confidence interval in the columns. """ tmp = np.linspace(0, 1, 6) is_linear = (self.link.inverse(tmp) == tmp).all() if method == 'endpoint' and not is_linear: ci_linear = self.linpred.conf_int(alpha=alpha, obs=False) ci = self.link.inverse(ci_linear) elif method == 'delta' or is_linear: se = self.se_mean q = self.dist.ppf(1 - alpha / 2., *self.dist_args) lower = self.predicted_mean - q * se upper = self.predicted_mean + q * se ci = np.column_stack((lower, upper)) # if we want to stack at a new last axis, for lower.ndim > 1 # np.concatenate((lower[..., None], upper[..., None]), axis=-1) return ci
[docs] def summary_frame(self, what='all', alpha=0.05): """Summary frame""" # TODO: finish and cleanup import pandas as pd from collections import OrderedDict #ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split ci_mean = self.conf_int(alpha=alpha) to_include = OrderedDict() to_include['mean'] = self.predicted_mean to_include['mean_se'] = self.se_mean to_include['mean_ci_lower'] = ci_mean[:, 0] to_include['mean_ci_upper'] = ci_mean[:, 1] self.table = to_include #OrderedDict doesn't work to preserve sequence # pandas dict doesn't handle 2d_array #data = np.column_stack(list(to_include.values())) #names = .... res = pd.DataFrame(to_include, index=self.row_labels, columns=to_include.keys()) return res
def get_prediction_glm(self, exog=None, transform=True, weights=None, row_labels=None, linpred=None, link=None, pred_kwds=None): """ compute prediction results Parameters ---------- exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. weights : array_like, optional Weights interpreted as in WLS, used for the variance of the predicted residual. args, kwargs : Some models can take additional arguments or keywords, see the predict method of the model for the details. Returns ------- prediction_results : generalized_linear_model.PredictionResults The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction of the mean and of new observations. """ # prepare exog and row_labels, based on base Results.predict if transform and hasattr(self.model, 'formula') and exog is not None: from patsy import dmatrix exog = dmatrix(self.model.data.design_info, exog) if exog is not None: if row_labels is None: row_labels = getattr(exog, 'index', None) if callable(row_labels): row_labels = None exog = np.asarray(exog) if exog.ndim == 1 and (self.model.exog.ndim == 1 or self.model.exog.shape[1] == 1): exog = exog[:, None] exog = np.atleast_2d(exog) # needed in count model shape[1] else: exog = self.model.exog if weights is None: weights = getattr(self.model, 'weights', None) if row_labels is None: row_labels = getattr(self.model.data, 'row_labels', None) # need to handle other arrays, TODO: is delegating to model possible ? if weights is not None: weights = np.asarray(weights) if (weights.size > 1 and (weights.ndim != 1 or weights.shape[0] == exog.shape[1])): raise ValueError('weights has wrong shape') ### end pred_kwds['linear'] = False predicted_mean = self.model.predict(self.params, exog, **pred_kwds) covb = self.cov_params() link_deriv = self.model.family.link.inverse_deriv(linpred.predicted_mean) var_pred_mean = link_deriv**2 * (exog * np.dot(covb, exog.T).T).sum(1) var_resid = self.scale # self.mse_resid / weights # TODO: check that we have correct scale, Refactor scale #??? # special case for now: if self.cov_type == 'fixed scale': var_resid = self.cov_kwds['scale'] if weights is not None: var_resid /= weights dist = ['norm', 't'][self.use_t] return PredictionResults(predicted_mean, var_pred_mean, var_resid, df=self.df_resid, dist=dist, row_labels=row_labels, linpred=linpred, link=link) def params_transform_univariate(params, cov_params, link=None, transform=None, row_labels=None): """ results for univariate, nonlinear, monotonicaly transformed parameters This provides transformed values, standard errors and confidence interval for transformations of parameters, for example in calculating rates with `exp(params)` in the case of Poisson or other models with exponential mean function. """ from statsmodels.genmod.families import links if link is None and transform is None: link = links.Log() if row_labels is None and hasattr(params, 'index'): row_labels = params.index params = np.asarray(params) predicted_mean = link.inverse(params) link_deriv = link.inverse_deriv(params) var_pred_mean = link_deriv**2 * np.diag(cov_params) # TODO: do we want covariance also, or just var/se dist = stats.norm # TODO: need ci for linear prediction, method of `lin_pred linpred = PredictionResults(params, np.diag(cov_params), dist=dist, row_labels=row_labels, link=links.identity()) res = PredictionResults(predicted_mean, var_pred_mean, dist=dist, row_labels=row_labels, linpred=linpred, link=link) return res