"""
State Space Analysis using the Kalman Filter
References
-----------
Durbin., J and Koopman, S.J. `Time Series Analysis by State Space Methods`.
Oxford, 2001.
Hamilton, J.D. `Time Series Analysis`. Princeton, 1994.
Harvey, A.C. `Forecasting, Structural Time Series Models and the Kalman Filter`.
Cambridge, 1989.
Notes
-----
This file follows Hamilton's notation pretty closely.
The ARMA Model class follows Durbin and Koopman notation.
Harvey uses Durbin and Koopman notation.
""" # noqa:E501
# Anderson and Moore `Optimal Filtering` provides a more efficient algorithm
# namely the information filter
# if the number of series is much greater than the number of states
# e.g., with a DSGE model. See Also
# http://www.federalreserve.gov/pubs/oss/oss4/aimindex.html
# Harvey notes that the square root filter will keep P_t pos. def. but
# is not strictly needed outside of the engineering (long series)
from __future__ import print_function
import numpy as np
from . import kalman_loglike
# Fast filtering and smoothing for multivariate state space models
# and The Riksbank -- Strid and Walentin (2008)
# Block Kalman filtering for large-scale DSGE models
# but this is obviously macro model specific
[docs]class KalmanFilter(object):
r"""
Kalman Filter code intended for use with the ARMA model.
Notes
-----
The notation for the state-space form follows Durbin and Koopman (2001).
The observation equations is
.. math:: y_{t} = Z_{t}\alpha_{t} + \epsilon_{t}
The state equation is
.. math:: \alpha_{t+1} = T_{t}\alpha_{t} + R_{t}\eta_{t}
For the present purposed \epsilon_{t} is assumed to always be zero.
"""
[docs] @classmethod
def T(cls, params, r, k, p): # F in Hamilton
"""
The coefficient matrix for the state vector in the state equation.
Its dimension is r+k x r+k.
Parameters
----------
r : int
In the context of the ARMA model r is max(p,q+1) where p is the
AR order and q is the MA order.
k : int
The number of exogenous variables in the ARMA model, including
the constant if appropriate.
p : int
The AR coefficient in an ARMA model.
References
----------
Durbin and Koopman Section 3.7.
"""
arr = np.zeros((r, r), dtype=params.dtype, order="F")
# allows for complex-step derivative
params_padded = np.zeros(r, dtype=params.dtype,
order="F")
# handle zero coefficients if necessary
# NOTE: squeeze added for cg optimizer
params_padded[:p] = params[k:p + k]
arr[:, 0] = params_padded
# first p params are AR coeffs w/ short params
arr[:-1, 1:] = np.eye(r - 1)
return arr
[docs] @classmethod
def R(cls, params, r, k, q, p): # R is H in Hamilton
"""
The coefficient matrix for the state vector in the observation
equation.
Its dimension is r+k x 1.
Parameters
----------
r : int
In the context of the ARMA model r is max(p,q+1) where p is the
AR order and q is the MA order.
k : int
The number of exogenous variables in the ARMA model, including
the constant if appropriate.
q : int
The MA order in an ARMA model.
p : int
The AR order in an ARMA model.
References
----------
Durbin and Koopman Section 3.7.
"""
arr = np.zeros((r, 1), dtype=params.dtype, order="F")
# this allows zero coefficients
# dtype allows for compl. der.
arr[1:q + 1, :] = params[p + k:p + k + q][:, None]
arr[0] = 1.0
return arr
[docs] @classmethod
def Z(cls, r):
"""
Returns the Z selector matrix in the observation equation.
Parameters
----------
r : int
In the context of the ARMA model r is max(p,q+1) where p is the
AR order and q is the MA order.
Notes
-----
Currently only returns a 1 x r vector [1,0,0,...0]. Will need to
be generalized when the Kalman Filter becomes more flexible.
"""
arr = np.zeros((1, r), order="F")
arr[:, 0] = 1.
return arr
[docs] @classmethod
def geterrors(cls, y, k, k_ar, k_ma, k_lags, nobs, Z_mat, m, R_mat, T_mat,
paramsdtype):
"""
Returns just the errors of the Kalman Filter
"""
if np.issubdtype(paramsdtype, np.float64):
return kalman_loglike.kalman_filter_double(
y, k, k_ar, k_ma, k_lags, int(nobs), Z_mat, R_mat, T_mat)[0]
elif np.issubdtype(paramsdtype, np.complex128):
return kalman_loglike.kalman_filter_complex(
y, k, k_ar, k_ma, k_lags, int(nobs), Z_mat, R_mat, T_mat)[0]
else:
raise TypeError("dtype %s is not supported "
"Please file a bug report" % paramsdtype)
@classmethod
def _init_kalman_state(cls, params, arma_model):
"""
Returns the system matrices and other info needed for the
Kalman Filter recursions
"""
paramsdtype = params.dtype
y = arma_model.endog.copy().astype(paramsdtype)
k = arma_model.k_exog + arma_model.k_trend
nobs = arma_model.nobs
k_ar = arma_model.k_ar
k_ma = arma_model.k_ma
k_lags = arma_model.k_lags
if arma_model.transparams:
newparams = arma_model._transparams(params)
else:
newparams = params # don't need a copy if not modified.
if k > 0:
y -= np.dot(arma_model.exog, newparams[:k])
# system matrices
Z_mat = cls.Z(k_lags)
m = Z_mat.shape[1] # r
R_mat = cls.R(newparams, k_lags, k, k_ma, k_ar)
T_mat = cls.T(newparams, k_lags, k, k_ar)
return (y, k, nobs, k_ar, k_ma, k_lags,
newparams, Z_mat, m, R_mat, T_mat, paramsdtype)
[docs] @classmethod
def loglike(cls, params, arma_model, set_sigma2=True):
"""
The loglikelihood for an ARMA model using the Kalman Filter recursions.
Parameters
----------
params : array
The coefficients of the ARMA model, assumed to be in the order of
trend variables and `k` exogenous coefficients, the `p` AR
coefficients, then the `q` MA coefficients.
arma_model : `statsmodels.tsa.arima.ARMA` instance
A reference to the ARMA model instance.
set_sigma2 : bool, optional
True if arma_model.sigma2 should be set.
Note that sigma2 will be computed in any case,
but it will be discarded if set_sigma2 is False.
Notes
-----
This works for both real valued and complex valued parameters. The
complex values being used to compute the numerical derivative. If
available will use a Cython version of the Kalman Filter.
"""
# TODO: see section 3.4.6 in Harvey for computing the derivatives in
# the recursion itself.
# TODO: this won't work for time-varying parameters
(y, k, nobs, k_ar, k_ma, k_lags, newparams, Z_mat, m, R_mat, T_mat,
paramsdtype) = cls._init_kalman_state(params, arma_model)
if np.issubdtype(paramsdtype, np.float64):
loglike, sigma2 = kalman_loglike.kalman_loglike_double(
y, k, k_ar, k_ma, k_lags, int(nobs),
Z_mat, R_mat, T_mat)
elif np.issubdtype(paramsdtype, np.complex128):
loglike, sigma2 = kalman_loglike.kalman_loglike_complex(
y, k, k_ar, k_ma, k_lags, int(nobs),
Z_mat.astype(complex), R_mat, T_mat)
else:
raise TypeError("This dtype %s is not supported "
" Please files a bug report." % paramsdtype)
if set_sigma2:
arma_model.sigma2 = sigma2
return loglike