"""
Markov switching models
Author: Chad Fulton
License: BSD-3
"""
from __future__ import division, absolute_import, print_function
from statsmodels.compat.scipy import logsumexp
import warnings
from collections import OrderedDict
import numpy as np
import pandas as pd
from statsmodels.tools.tools import Bunch
from statsmodels.tools.numdiff import approx_fprime_cs, approx_hess_cs
from statsmodels.tools.decorators import cache_readonly
from statsmodels.tools.eval_measures import aic, bic, hqic
from statsmodels.tools.tools import pinv_extended
from statsmodels.tools.sm_exceptions import EstimationWarning
import statsmodels.base.wrapper as wrap
from statsmodels.base.data import PandasData
import statsmodels.tsa.base.tsa_model as tsbase
from statsmodels.tsa.statespace.tools import find_best_blas_type, prepare_exog
from statsmodels.tsa.regime_switching._hamilton_filter import (
shamilton_filter, dhamilton_filter, chamilton_filter, zhamilton_filter)
from statsmodels.tsa.regime_switching._kim_smoother import (
skim_smoother, dkim_smoother, ckim_smoother, zkim_smoother)
prefix_hamilton_filter_map = {
's': shamilton_filter, 'd': dhamilton_filter,
'c': chamilton_filter, 'z': zhamilton_filter
}
prefix_kim_smoother_map = {
's': skim_smoother, 'd': dkim_smoother,
'c': ckim_smoother, 'z': zkim_smoother
}
def _logistic(x):
"""
Note that this is not a vectorized function
"""
x = np.array(x)
# np.exp(x) / (1 + np.exp(x))
if x.ndim == 0:
y = np.reshape(x, (1, 1, 1))
# np.exp(x[i]) / (1 + np.sum(np.exp(x[:])))
elif x.ndim == 1:
y = np.reshape(x, (len(x), 1, 1))
# np.exp(x[i,t]) / (1 + np.sum(np.exp(x[:,t])))
elif x.ndim == 2:
y = np.reshape(x, (x.shape[0], 1, x.shape[1]))
# np.exp(x[i,j,t]) / (1 + np.sum(np.exp(x[:,j,t])))
elif x.ndim == 3:
y = x
else:
raise NotImplementedError
tmp = np.c_[np.zeros((y.shape[-1], y.shape[1], 1)), y.T].T
evaluated = np.reshape(np.exp(y - logsumexp(tmp, axis=0)), x.shape)
return evaluated
def _partials_logistic(x):
"""
Note that this is not a vectorized function
"""
tmp = _logistic(x)
# k
if tmp.ndim == 0:
return tmp - tmp**2
# k x k
elif tmp.ndim == 1:
partials = np.diag(tmp - tmp**2)
# k x k x t
elif tmp.ndim == 2:
partials = [np.diag(tmp[:, t] - tmp[:, t]**2)
for t in range(tmp.shape[1])]
shape = tmp.shape[1], tmp.shape[0], tmp.shape[0]
partials = np.concatenate(partials).reshape(shape).transpose((1, 2, 0))
# k x k x j x t
else:
partials = [[np.diag(tmp[:, j, t] - tmp[:, j, t]**2)
for t in range(tmp.shape[2])]
for j in range(tmp.shape[1])]
shape = tmp.shape[1], tmp.shape[2], tmp.shape[0], tmp.shape[0]
partials = np.concatenate(partials).reshape(shape).transpose(
(2, 3, 0, 1))
for i in range(tmp.shape[0]):
for j in range(i):
partials[i, j, ...] = -tmp[i, ...] * tmp[j, ...]
partials[j, i, ...] = partials[i, j, ...]
return partials
def py_hamilton_filter(initial_probabilities, regime_transition,
conditional_likelihoods, model_order):
"""
Hamilton filter using pure Python
Parameters
----------
initial_probabilities : array
Array of initial probabilities, shaped (k_regimes,) giving the
distribution of the regime process at time t = -order where order
is a nonnegative integer.
regime_transition : array
Matrix of regime transition probabilities, shaped either
(k_regimes, k_regimes, 1) or if there are time-varying transition
probabilities (k_regimes, k_regimes, nobs + order). Entry [i, j,
t] contains the probability of moving from j at time t-1 to i at
time t, so each matrix regime_transition[:, :, t] should be left
stochastic. The first order entries and initial_probabilities are
used to produce the initial joint distribution of dimension order +
1 at time t=0.
conditional_likelihoods : array
Array of likelihoods conditional on the last `order+1` regimes,
shaped (k_regimes,)*(order + 1) + (nobs,).
Returns
-------
filtered_marginal_probabilities : array
Array containing Pr[S_t=s_t | Y_t] - the probability of being in each
regime conditional on time t information. Shaped (k_regimes, nobs).
predicted_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t-1}] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on time t-1
information. Shaped (k_regimes,) * (order + 1) + (nobs,).
joint_likelihoods : array
Array of likelihoods condition on time t information, shaped (nobs,).
filtered_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t}] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on time t
information. Shaped (k_regimes,) * (order + 1) + (nobs,).
"""
# Dimensions
k_regimes = len(initial_probabilities)
nobs = conditional_likelihoods.shape[-1]
order = conditional_likelihoods.ndim - 2
dtype = conditional_likelihoods.dtype
# Check for compatible shapes.
incompatible_shapes = (
regime_transition.shape[-1] not in (1, nobs + model_order)
or regime_transition.shape[:2] != (k_regimes, k_regimes)
or conditional_likelihoods.shape[0] != k_regimes)
if incompatible_shapes:
raise ValueError('Arguments do not have compatible shapes')
# Storage
# Pr[S_t = s_t | Y_t]
filtered_marginal_probabilities = (
np.zeros((k_regimes, nobs), dtype=dtype))
# Pr[S_t = s_t, ... S_{t-r} = s_{t-r} | Y_{t-1}]
predicted_joint_probabilities = np.zeros(
(k_regimes,) * (order + 1) + (nobs,), dtype=dtype)
# f(y_t | Y_{t-1})
joint_likelihoods = np.zeros((nobs,), dtype)
# Pr[S_t = s_t, ... S_{t-r} = s_{t-r} | Y_t]
filtered_joint_probabilities = np.zeros(
(k_regimes,) * (order + 1) + (nobs + 1,), dtype=dtype)
# Initial probabilities
filtered_marginal_probabilities[:, 0] = initial_probabilities
tmp = np.copy(initial_probabilities)
shape = (k_regimes, k_regimes)
for i in range(order):
tmp = np.reshape(regime_transition[..., i], shape + (1,) * i) * tmp
filtered_joint_probabilities[..., 0] = tmp
# Check that regime_transition is oriented correctly.
if not np.allclose(np.sum(regime_transition, axis=0), 1):
raise ValueError('regime_transition does not contain '
'left stochastic matrices.')
# Reshape regime_transition so we can use broadcasting
shape = (k_regimes, k_regimes)
shape += (1,) * (order-1)
shape += (regime_transition.shape[-1],)
regime_transition = np.reshape(regime_transition, shape)
# Get appropriate subset of transition matrix
if regime_transition.shape[-1] > 1:
regime_transition = regime_transition[..., model_order:]
# Hamilton filter iterations
transition_t = 0
for t in range(nobs):
if regime_transition.shape[-1] > 1:
transition_t = t
# S_t, S_{t-1}, ..., S_{t-r} | t-1, stored at zero-indexed location t
if order > 0:
predicted_joint_probabilities[..., t] = (
# S_t | S_{t-1}
regime_transition[..., transition_t] *
# S_{t-1}, S_{t-2}, ..., S_{t-r} | t-1
filtered_joint_probabilities[..., t].sum(axis=-1))
else:
predicted_joint_probabilities[..., t] = (
np.dot(regime_transition[..., transition_t],
filtered_joint_probabilities[..., t]))
# f(y_t, S_t, ..., S_{t-r} | t-1)
tmp = (conditional_likelihoods[..., t] *
predicted_joint_probabilities[..., t])
# f(y_t | t-1)
joint_likelihoods[t] = np.sum(tmp)
# S_t, S_{t-1}, ..., S_{t-r} | t, stored at index t+1
filtered_joint_probabilities[..., t+1] = (
tmp / joint_likelihoods[t])
# S_t | t
filtered_marginal_probabilities = filtered_joint_probabilities[..., 1:]
for i in range(1, filtered_marginal_probabilities.ndim - 1):
filtered_marginal_probabilities = np.sum(
filtered_marginal_probabilities, axis=-2)
return (filtered_marginal_probabilities, predicted_joint_probabilities,
joint_likelihoods, filtered_joint_probabilities[..., 1:])
def cy_hamilton_filter(initial_probabilities, regime_transition,
conditional_likelihoods, model_order):
"""
Hamilton filter using Cython inner loop
Parameters
----------
initial_probabilities : array
Array of initial probabilities, shaped (k_regimes,) giving the
distribution of the regime process at time t = -order where order
is a nonnegative integer.
regime_transition : array
Matrix of regime transition probabilities, shaped either
(k_regimes, k_regimes, 1) or if there are time-varying transition
probabilities (k_regimes, k_regimes, nobs + order). Entry [i, j,
t] contains the probability of moving from j at time t-1 to i at
time t, so each matrix regime_transition[:, :, t] should be left
stochastic. The first order entries and initial_probabilities are
used to produce the initial joint distribution of dimension order +
1 at time t=0.
conditional_likelihoods : array
Array of likelihoods conditional on the last `order+1` regimes,
shaped (k_regimes,)*(order + 1) + (nobs,).
Returns
-------
filtered_marginal_probabilities : array
Array containing Pr[S_t=s_t | Y_t] - the probability of being in each
regime conditional on time t information. Shaped (k_regimes, nobs).
predicted_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t-1}] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on time t-1
information. Shaped (k_regimes,) * (order + 1) + (nobs,).
joint_likelihoods : array
Array of likelihoods condition on time t information, shaped (nobs,).
filtered_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t}] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on time t
information. Shaped (k_regimes,) * (order + 1) + (nobs,).
"""
# Dimensions
k_regimes = len(initial_probabilities)
nobs = conditional_likelihoods.shape[-1]
order = conditional_likelihoods.ndim - 2
dtype = conditional_likelihoods.dtype
# Check for compatible shapes.
incompatible_shapes = (
regime_transition.shape[-1] not in (1, nobs + model_order)
or regime_transition.shape[:2] != (k_regimes, k_regimes)
or conditional_likelihoods.shape[0] != k_regimes)
if incompatible_shapes:
raise ValueError('Arguments do not have compatible shapes')
# Storage
# Pr[S_t = s_t | Y_t]
filtered_marginal_probabilities = (
np.zeros((k_regimes, nobs), dtype=dtype))
# Pr[S_t = s_t, ... S_{t-r} = s_{t-r} | Y_{t-1}]
# Has k_regimes^(order+1) elements
predicted_joint_probabilities = np.zeros(
(k_regimes,) * (order + 1) + (nobs,), dtype=dtype)
# f(y_t | Y_{t-1})
joint_likelihoods = np.zeros((nobs,), dtype)
# Pr[S_t = s_t, ... S_{t-r+1} = s_{t-r+1} | Y_t]
# Has k_regimes^order elements
filtered_joint_probabilities = np.zeros(
(k_regimes,) * (order + 1) + (nobs + 1,), dtype=dtype)
# Initial probabilities
filtered_marginal_probabilities[:, 0] = initial_probabilities
tmp = np.copy(initial_probabilities)
shape = (k_regimes, k_regimes)
transition_t = 0
for i in range(order):
if regime_transition.shape[-1] > 1:
transition_t = i
tmp = np.reshape(regime_transition[..., transition_t],
shape + (1,) * i) * tmp
filtered_joint_probabilities[..., 0] = tmp
# Get appropriate subset of transition matrix
if regime_transition.shape[-1] > 1:
regime_transition = regime_transition[..., model_order:]
# Run Cython filter iterations
prefix, dtype, _ = find_best_blas_type((
regime_transition, conditional_likelihoods, joint_likelihoods,
predicted_joint_probabilities, filtered_joint_probabilities))
func = prefix_hamilton_filter_map[prefix]
func(nobs, k_regimes, order, regime_transition,
conditional_likelihoods.reshape(k_regimes**(order+1), nobs),
joint_likelihoods,
predicted_joint_probabilities.reshape(k_regimes**(order+1), nobs),
filtered_joint_probabilities.reshape(k_regimes**(order+1), nobs+1))
# S_t | t
filtered_marginal_probabilities = filtered_joint_probabilities[..., 1:]
for i in range(1, filtered_marginal_probabilities.ndim - 1):
filtered_marginal_probabilities = np.sum(
filtered_marginal_probabilities, axis=-2)
return (filtered_marginal_probabilities, predicted_joint_probabilities,
joint_likelihoods, filtered_joint_probabilities[..., 1:])
def py_kim_smoother(regime_transition, predicted_joint_probabilities,
filtered_joint_probabilities):
"""
Kim smoother using pure Python
Parameters
----------
regime_transition : array
Matrix of regime transition probabilities, shaped either
(k_regimes, k_regimes, 1) or if there are time-varying transition
probabilities (k_regimes, k_regimes, nobs).
predicted_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t-1}] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on time t-1
information. Shaped (k_regimes,) * (order + 1) + (nobs,).
filtered_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t}] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on time t
information. Shaped (k_regimes,) * (order + 1) + (nobs,).
Returns
-------
smoothed_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_T] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on all information.
Shaped (k_regimes,) * (order + 1) + (nobs,).
smoothed_marginal_probabilities : array
Array containing Pr[S_t=s_t | Y_T] - the probability of being in each
regime conditional on all information. Shaped (k_regimes, nobs).
"""
# Dimensions
k_regimes = filtered_joint_probabilities.shape[0]
nobs = filtered_joint_probabilities.shape[-1]
order = filtered_joint_probabilities.ndim - 2
dtype = filtered_joint_probabilities.dtype
# Storage
smoothed_joint_probabilities = np.zeros(
(k_regimes,) * (order + 1) + (nobs,), dtype=dtype)
smoothed_marginal_probabilities = np.zeros((k_regimes, nobs), dtype=dtype)
# S_T, S_{T-1}, ..., S_{T-r} | T
smoothed_joint_probabilities[..., -1] = (
filtered_joint_probabilities[..., -1])
# Reshape transition so we can use broadcasting
shape = (k_regimes, k_regimes)
shape += (1,) * (order)
shape += (regime_transition.shape[-1],)
regime_transition = np.reshape(regime_transition, shape)
# Get appropriate subset of transition matrix
if regime_transition.shape[-1] == nobs + order:
regime_transition = regime_transition[..., order:]
# Kim smoother iterations
transition_t = 0
for t in range(nobs - 2, -1, -1):
if regime_transition.shape[-1] > 1:
transition_t = t + 1
# S_{t+1}, S_t, ..., S_{t-r+1} | t
# x = predicted_joint_probabilities[..., t]
x = (filtered_joint_probabilities[..., t] *
regime_transition[..., transition_t])
# S_{t+1}, S_t, ..., S_{t-r+2} | T / S_{t+1}, S_t, ..., S_{t-r+2} | t
y = (smoothed_joint_probabilities[..., t+1] /
predicted_joint_probabilities[..., t+1])
# S_t, S_{t-1}, ..., S_{t-r+1} | T
smoothed_joint_probabilities[..., t] = (x * y[..., None]).sum(axis=0)
# Get smoothed marginal probabilities S_t | T by integrating out
# S_{t-k+1}, S_{t-k+2}, ..., S_{t-1}
smoothed_marginal_probabilities = smoothed_joint_probabilities
for i in range(1, smoothed_marginal_probabilities.ndim - 1):
smoothed_marginal_probabilities = np.sum(
smoothed_marginal_probabilities, axis=-2)
return smoothed_joint_probabilities, smoothed_marginal_probabilities
def cy_kim_smoother(regime_transition, predicted_joint_probabilities,
filtered_joint_probabilities):
"""
Kim smoother using Cython inner loop
Parameters
----------
regime_transition : array
Matrix of regime transition probabilities, shaped either
(k_regimes, k_regimes, 1) or if there are time-varying transition
probabilities (k_regimes, k_regimes, nobs).
predicted_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t-1}] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on time t-1
information. Shaped (k_regimes,) * (order + 1) + (nobs,).
filtered_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_{t}] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on time t
information. Shaped (k_regimes,) * (order + 1) + (nobs,).
Returns
-------
smoothed_joint_probabilities : array
Array containing Pr[S_t=s_t, ..., S_{t-order}=s_{t-order} | Y_T] -
the joint probability of the current and previous `order` periods
being in each combination of regimes conditional on all information.
Shaped (k_regimes,) * (order + 1) + (nobs,).
smoothed_marginal_probabilities : array
Array containing Pr[S_t=s_t | Y_T] - the probability of being in each
regime conditional on all information. Shaped (k_regimes, nobs).
"""
# Dimensions
k_regimes = filtered_joint_probabilities.shape[0]
nobs = filtered_joint_probabilities.shape[-1]
order = filtered_joint_probabilities.ndim - 2
dtype = filtered_joint_probabilities.dtype
# Storage
smoothed_joint_probabilities = np.zeros(
(k_regimes,) * (order + 1) + (nobs,), dtype=dtype)
# Get appropriate subset of transition matrix
if regime_transition.shape[-1] == nobs + order:
regime_transition = regime_transition[..., order:]
# Run Cython smoother iterations
prefix, dtype, _ = find_best_blas_type((
regime_transition, predicted_joint_probabilities,
filtered_joint_probabilities))
func = prefix_kim_smoother_map[prefix]
func(nobs, k_regimes, order, regime_transition,
predicted_joint_probabilities.reshape(k_regimes**(order+1), nobs),
filtered_joint_probabilities.reshape(k_regimes**(order+1), nobs),
smoothed_joint_probabilities.reshape(k_regimes**(order+1), nobs))
# Get smoothed marginal probabilities S_t | T by integrating out
# S_{t-k+1}, S_{t-k+2}, ..., S_{t-1}
smoothed_marginal_probabilities = smoothed_joint_probabilities
for i in range(1, smoothed_marginal_probabilities.ndim - 1):
smoothed_marginal_probabilities = np.sum(
smoothed_marginal_probabilities, axis=-2)
return smoothed_joint_probabilities, smoothed_marginal_probabilities
class MarkovSwitchingParams(object):
"""
Class to hold parameters in Markov switching models
Parameters
----------
k_regimes : int
The number of regimes between which parameters may switch.
Notes
-----
The purpose is to allow selecting parameter indexes / slices based on
parameter type, regime number, or both.
Parameters are lexicographically ordered in the following way:
1. Named type string (e.g. "autoregressive")
2. Number (e.g. the first autoregressive parameter, then the second)
3. Regime (if applicable)
Parameter blocks are set using dictionary setter notation where the key
is the named type string and the value is a list of boolean values
indicating whether a given parameter is switching or not.
For example, consider the following code:
parameters = MarkovSwitchingParams(k_regimes=2)
parameters['regime_transition'] = [1,1]
parameters['exog'] = [0, 1]
This implies the model has 7 parameters: 4 "regime_transition"-related
parameters (2 parameters that each switch according to regimes) and 3
"exog"-related parameters (1 parameter that does not switch, and one 1 that
does).
The order of parameters is then:
1. The first "regime_transition" parameter, regime 0
2. The first "regime_transition" parameter, regime 1
3. The second "regime_transition" parameter, regime 1
4. The second "regime_transition" parameter, regime 1
5. The first "exog" parameter
6. The second "exog" parameter, regime 0
7. The second "exog" parameter, regime 1
Retrieving indexes / slices is done through dictionary getter notation.
There are three options for the dictionary key:
- Regime number (zero-indexed)
- Named type string (e.g. "autoregressive")
- Regime number and named type string
In the above example, consider the following getters:
>>> parameters[0]
array([0, 2, 4, 6])
>>> parameters[1]
array([1, 3, 5, 6])
>>> parameters['exog']
slice(4, 7, None)
>>> parameters[0, 'exog']
[4, 6]
>>> parameters[1, 'exog']
[4, 7]
Notice that in the last two examples, both lists of indexes include 4.
That's because that is the index of the the non-switching first "exog"
parameter, which should be selected regardless of the regime.
In addition to the getter, the `k_parameters` attribute is an OrderedDict
with the named type strings as the keys. It can be used to get the total
number of parameters of each type:
>>> parameters.k_parameters['regime_transition']
4
>>> parameters.k_parameters['exog']
3
"""
def __init__(self, k_regimes):
self.k_regimes = k_regimes
self.k_params = 0
self.k_parameters = OrderedDict()
self.switching = OrderedDict()
self.slices_purpose = OrderedDict()
self.relative_index_regime_purpose = [
OrderedDict() for i in range(self.k_regimes)]
self.index_regime_purpose = [
OrderedDict() for i in range(self.k_regimes)]
self.index_regime = [[] for i in range(self.k_regimes)]
def __getitem__(self, key):
_type = type(key)
# Get a slice for a block of parameters by purpose
if _type is str:
return self.slices_purpose[key]
# Get a slice for a block of parameters by regime
elif _type is int:
return self.index_regime[key]
elif _type is tuple:
if not len(key) == 2:
raise IndexError('Invalid index')
if type(key[1]) == str and type(key[0]) == int:
return self.index_regime_purpose[key[0]][key[1]]
elif type(key[0]) == str and type(key[1]) == int:
return self.index_regime_purpose[key[1]][key[0]]
else:
raise IndexError('Invalid index')
else:
raise IndexError('Invalid index')
def __setitem__(self, key, value):
_type = type(key)
if _type is str:
value = np.array(value, dtype=bool, ndmin=1)
k_params = self.k_params
self.k_parameters[key] = (
value.size + np.sum(value) * (self.k_regimes - 1))
self.k_params += self.k_parameters[key]
self.switching[key] = value
self.slices_purpose[key] = np.s_[k_params:self.k_params]
for j in range(self.k_regimes):
self.relative_index_regime_purpose[j][key] = []
self.index_regime_purpose[j][key] = []
offset = 0
for i in range(value.size):
switching = value[i]
for j in range(self.k_regimes):
# Non-switching parameters
if not switching:
self.relative_index_regime_purpose[j][key].append(
offset)
# Switching parameters
else:
self.relative_index_regime_purpose[j][key].append(
offset + j)
offset += 1 if not switching else self.k_regimes
for j in range(self.k_regimes):
offset = 0
indices = []
for k, v in self.relative_index_regime_purpose[j].items():
v = (np.r_[v] + offset).tolist()
self.index_regime_purpose[j][k] = v
indices.append(v)
offset += self.k_parameters[k]
self.index_regime[j] = np.concatenate(indices).astype(int)
else:
raise IndexError('Invalid index')
class MarkovSwitching(tsbase.TimeSeriesModel):
"""
First-order k-regime Markov switching model
Parameters
----------
endog : array_like
The endogenous variable.
k_regimes : integer
The number of regimes.
order : integer, optional
The order of the model describes the dependence of the likelihood on
previous regimes. This depends on the model in question and should be
set appropriately by subclasses.
exog_tvtp : array_like, optional
Array of exogenous or lagged variables to use in calculating
time-varying transition probabilities (TVTP). TVTP is only used if this
variable is provided. If an intercept is desired, a column of ones must
be explicitly included in this array.
Notes
-----
This model is new and API stability is not guaranteed, although changes
will be made in a backwards compatible way if possible.
References
----------
Kim, Chang-Jin, and Charles R. Nelson. 1999.
"State-Space Models with Regime Switching:
Classical and Gibbs-Sampling Approaches with Applications".
MIT Press Books. The MIT Press.
"""
def __init__(self, endog, k_regimes, order=0, exog_tvtp=None, exog=None,
dates=None, freq=None, missing='none'):
# Properties
self.k_regimes = k_regimes
self.tvtp = exog_tvtp is not None
# The order of the model may be overridden in subclasses
self.order = order
# Exogenous data
# TODO add checks for exog_tvtp consistent shape and indices
self.k_tvtp, self.exog_tvtp = prepare_exog(exog_tvtp)
# Initialize the base model
super(MarkovSwitching, self).__init__(endog, exog, dates=dates,
freq=freq, missing=missing)
# Dimensions
self.nobs = self.endog.shape[0]
# Sanity checks
if self.endog.ndim > 1 and self.endog.shape[1] > 1:
raise ValueError('Must have univariate endogenous data.')
if self.k_regimes < 2:
raise ValueError('Markov switching models must have at least two'
' regimes.')
if not(self.exog_tvtp is None or self.exog_tvtp.shape[0] == self.nobs):
raise ValueError('Time-varying transition probabilities exogenous'
' array must have the same number of observations'
' as the endogenous array.')
# Parameters
self.parameters = MarkovSwitchingParams(self.k_regimes)
k_transition = self.k_regimes - 1
if self.tvtp:
k_transition *= self.k_tvtp
self.parameters['regime_transition'] = [1] * k_transition
# Internal model properties: default is steady-state initialization
self._initialization = 'steady-state'
self._initial_probabilities = None
@property
def k_params(self):
"""
(int) Number of parameters in the model
"""
return self.parameters.k_params
def initialize_steady_state(self):
"""
Set initialization of regime probabilities to be steady-state values
Notes
-----
Only valid if there are not time-varying transition probabilities.
"""
if self.tvtp:
raise ValueError('Cannot use steady-state initialization when'
' the regime transition matrix is time-varying.')
self._initialization = 'steady-state'
self._initial_probabilities = None
def initialize_known(self, probabilities, tol=1e-8):
"""
Set initialization of regime probabilities to use known values
"""
self._initialization = 'known'
probabilities = np.array(probabilities, ndmin=1)
if not probabilities.shape == (self.k_regimes,):
raise ValueError('Initial probabilities must be a vector of shape'
' (k_regimes,).')
if not np.abs(np.sum(probabilities) - 1) < tol:
raise ValueError('Initial probabilities vector must sum to one.')
self._initial_probabilities = probabilities
def initial_probabilities(self, params, regime_transition=None):
"""
Retrieve initial probabilities
"""
params = np.array(params, ndmin=1)
if self._initialization == 'steady-state':
if regime_transition is None:
regime_transition = self.regime_transition_matrix(params)
if regime_transition.ndim == 3:
regime_transition = regime_transition[..., 0]
m = regime_transition.shape[0]
A = np.c_[(np.eye(m) - regime_transition).T, np.ones(m)].T
try:
probabilities = np.linalg.pinv(A)[:, -1]
except np.linalg.LinAlgError:
raise RuntimeError('Steady-state probabilities could not be'
' constructed.')
elif self._initialization == 'known':
probabilities = self._initial_probabilities
else:
raise RuntimeError('Invalid initialization method selected.')
return probabilities
def _regime_transition_matrix_tvtp(self, params, exog_tvtp=None):
if exog_tvtp is None:
exog_tvtp = self.exog_tvtp
nobs = len(exog_tvtp)
regime_transition_matrix = np.zeros(
(self.k_regimes, self.k_regimes, nobs),
dtype=np.promote_types(np.float64, params.dtype))
# Compute the predicted values from the regression
for i in range(self.k_regimes):
coeffs = params[self.parameters[i, 'regime_transition']]
regime_transition_matrix[:-1, i, :] = np.dot(
exog_tvtp,
np.reshape(coeffs, (self.k_regimes-1, self.k_tvtp)).T).T
# Perform the logistic transformation
tmp = np.c_[np.zeros((nobs, self.k_regimes, 1)),
regime_transition_matrix[:-1, :, :].T].T
regime_transition_matrix[:-1, :, :] = np.exp(
regime_transition_matrix[:-1, :, :] - logsumexp(tmp, axis=0))
# Compute the last column of the transition matrix
regime_transition_matrix[-1, :, :] = (
1 - np.sum(regime_transition_matrix[:-1, :, :], axis=0))
return regime_transition_matrix
def regime_transition_matrix(self, params, exog_tvtp=None):
"""
Construct the left-stochastic transition matrix
Notes
-----
This matrix will either be shaped (k_regimes, k_regimes, 1) or if there
are time-varying transition probabilities, it will be shaped
(k_regimes, k_regimes, nobs).
The (i,j)th element of this matrix is the probability of transitioning
from regime j to regime i; thus the previous regime is represented in a
column and the next regime is represented by a row.
It is left-stochastic, meaning that each column sums to one (because
it is certain that from one regime (j) you will transition to *some
other regime*).
"""
params = np.array(params, ndmin=1)
if not self.tvtp:
regime_transition_matrix = np.zeros(
(self.k_regimes, self.k_regimes, 1),
dtype=np.promote_types(np.float64, params.dtype))
regime_transition_matrix[:-1, :, 0] = np.reshape(
params[self.parameters['regime_transition']],
(self.k_regimes-1, self.k_regimes))
regime_transition_matrix[-1, :, 0] = (
1 - np.sum(regime_transition_matrix[:-1, :, 0], axis=0))
else:
regime_transition_matrix = (
self._regime_transition_matrix_tvtp(params, exog_tvtp))
return regime_transition_matrix
def predict(self, params, start=None, end=None, probabilities=None,
conditional=False):
"""
In-sample prediction and out-of-sample forecasting
Parameters
----------
params : array
Parameters at which to form predictions
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting,
i.e., the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, i.e.,
the last forecast is end. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out of sample prediction. Default is the last observation in
the sample.
probabilities : string or array_like, optional
Specifies the weighting probabilities used in constructing the
prediction as a weighted average. If a string, can be 'predicted',
'filtered', or 'smoothed'. Otherwise can be an array of
probabilities to use. Default is smoothed.
conditional: boolean or int, optional
Whether or not to return predictions conditional on current or
past regimes. If False, returns a single vector of weighted
predictions. If True or 1, returns predictions conditional on the
current regime. For larger integers, returns predictions
conditional on the current regime and some number of past regimes.
Returns
-------
predict : array
Array of out of in-sample predictions and / or out-of-sample
forecasts.
"""
if start is None:
start = self._index[0]
# Handle start, end
start, end, out_of_sample, prediction_index = (
self._get_prediction_index(start, end))
if out_of_sample > 0:
raise NotImplementedError
# Perform in-sample prediction
predict = self.predict_conditional(params)
squeezed = np.squeeze(predict)
# Check if we need to do weighted averaging
if squeezed.ndim - 1 > conditional:
# Determine in-sample weighting probabilities
if probabilities is None or probabilities == 'smoothed':
results = self.smooth(params, return_raw=True)
probabilities = results.smoothed_joint_probabilities
elif probabilities == 'filtered':
results = self.filter(params, return_raw=True)
probabilities = results.filtered_joint_probabilities
elif probabilities == 'predicted':
results = self.filter(params, return_raw=True)
probabilities = results.predicted_joint_probabilities
# Compute weighted average
predict = (predict * probabilities)
for i in range(predict.ndim - 1 - int(conditional)):
predict = np.sum(predict, axis=-2)
else:
predict = squeezed
return predict[start:end + out_of_sample + 1]
def predict_conditional(self, params):
"""
In-sample prediction, conditional on the current, and possibly past,
regimes
Parameters
----------
params : array_like
Array of parameters at which to perform prediction.
Returns
-------
predict : array_like
Array of predictions conditional on current, and possibly past,
regimes
"""
raise NotImplementedError
def _conditional_likelihoods(self, params):
"""
Compute likelihoods conditional on the current period's regime (and
the last self.order periods' regimes if self.order > 0).
Must be implemented in subclasses.
"""
raise NotImplementedError
def _filter(self, params, regime_transition=None):
# Get the regime transition matrix if not provided
if regime_transition is None:
regime_transition = self.regime_transition_matrix(params)
# Get the initial probabilities
initial_probabilities = self.initial_probabilities(
params, regime_transition)
# Compute the conditional likelihoods
conditional_likelihoods = self._conditional_likelihoods(params)
# Apply the filter
return ((regime_transition, initial_probabilities,
conditional_likelihoods) +
cy_hamilton_filter(initial_probabilities, regime_transition,
conditional_likelihoods, self.order))
def filter(self, params, transformed=True, cov_type=None, cov_kwds=None,
return_raw=False, results_class=None,
results_wrapper_class=None):
"""
Apply the Hamilton filter
Parameters
----------
params : array_like
Array of parameters at which to perform filtering.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
cov_type : str, optional
See `fit` for a description of covariance matrix types
for results object.
cov_kwds : dict or None, optional
See `fit` for a description of required keywords for alternative
covariance estimators
return_raw : boolean,optional
Whether or not to return only the raw Hamilton filter output or a
full results object. Default is to return a full results object.
results_class : type, optional
A results class to instantiate rather than
`MarkovSwitchingResults`. Usually only used internally by
subclasses.
results_wrapper_class : type, optional
A results wrapper class to instantiate rather than
`MarkovSwitchingResults`. Usually only used internally by
subclasses.
Returns
-------
MarkovSwitchingResults
"""
params = np.array(params, ndmin=1)
if not transformed:
params = self.transform_params(params)
# Save the parameter names
self.data.param_names = self.param_names
# Get the result
names = ['regime_transition', 'initial_probabilities',
'conditional_likelihoods', 'filtered_marginal_probabilities',
'predicted_joint_probabilities', 'joint_likelihoods',
'filtered_joint_probabilities']
result = HamiltonFilterResults(
self, Bunch(**dict(zip(names, self._filter(params)))))
# Wrap in a results object
return self._wrap_results(params, result, return_raw, cov_type,
cov_kwds, results_class,
results_wrapper_class)
def _smooth(self, params, filtered_marginal_probabilities,
predicted_joint_probabilities,
filtered_joint_probabilities, regime_transition=None):
# Get the regime transition matrix
if regime_transition is None:
regime_transition = self.regime_transition_matrix(params)
# Apply the smoother
return cy_kim_smoother(regime_transition,
predicted_joint_probabilities,
filtered_joint_probabilities)
@property
def _res_classes(self):
return {'fit': (MarkovSwitchingResults, MarkovSwitchingResultsWrapper)}
def _wrap_results(self, params, result, return_raw, cov_type=None,
cov_kwds=None, results_class=None, wrapper_class=None):
if not return_raw:
# Wrap in a results object
result_kwargs = {}
if cov_type is not None:
result_kwargs['cov_type'] = cov_type
if cov_kwds is not None:
result_kwargs['cov_kwds'] = cov_kwds
if results_class is None:
results_class = self._res_classes['fit'][0]
if wrapper_class is None:
wrapper_class = self._res_classes['fit'][1]
res = results_class(self, params, result, **result_kwargs)
result = wrapper_class(res)
return result
def smooth(self, params, transformed=True, cov_type=None, cov_kwds=None,
return_raw=False, results_class=None,
results_wrapper_class=None):
"""
Apply the Kim smoother and Hamilton filter
Parameters
----------
params : array_like
Array of parameters at which to perform filtering.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
cov_type : str, optional
See `fit` for a description of covariance matrix types
for results object.
cov_kwds : dict or None, optional
See `fit` for a description of required keywords for alternative
covariance estimators
return_raw : boolean,optional
Whether or not to return only the raw Hamilton filter output or a
full results object. Default is to return a full results object.
results_class : type, optional
A results class to instantiate rather than
`MarkovSwitchingResults`. Usually only used internally by
subclasses.
results_wrapper_class : type, optional
A results wrapper class to instantiate rather than
`MarkovSwitchingResults`. Usually only used internally by
subclasses.
Returns
-------
MarkovSwitchingResults
"""
params = np.array(params, ndmin=1)
if not transformed:
params = self.transform_params(params)
# Save the parameter names
self.data.param_names = self.param_names
# Hamilton filter
names = ['regime_transition', 'initial_probabilities',
'conditional_likelihoods', 'filtered_marginal_probabilities',
'predicted_joint_probabilities', 'joint_likelihoods',
'filtered_joint_probabilities']
result = Bunch(**dict(zip(names, self._filter(params))))
# Kim smoother
out = self._smooth(params, result.filtered_marginal_probabilities,
result.predicted_joint_probabilities,
result.filtered_joint_probabilities)
result['smoothed_joint_probabilities'] = out[0]
result['smoothed_marginal_probabilities'] = out[1]
result = KimSmootherResults(self, result)
# Wrap in a results object
return self._wrap_results(params, result, return_raw, cov_type,
cov_kwds, results_class,
results_wrapper_class)
def loglikeobs(self, params, transformed=True):
"""
Loglikelihood evaluation for each period
Parameters
----------
params : array_like
Array of parameters at which to evaluate the loglikelihood
function.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
"""
params = np.array(params, ndmin=1)
if not transformed:
params = self.transform_params(params)
results = self._filter(params)
return np.log(results[5])
def loglike(self, params, transformed=True):
"""
Loglikelihood evaluation
Parameters
----------
params : array_like
Array of parameters at which to evaluate the loglikelihood
function.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
"""
return np.sum(self.loglikeobs(params, transformed))
def score(self, params, transformed=True):
"""
Compute the score function at params.
Parameters
----------
params : array_like
Array of parameters at which to evaluate the score
function.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
"""
params = np.array(params, ndmin=1)
return approx_fprime_cs(params, self.loglike, args=(transformed,))
def score_obs(self, params, transformed=True):
"""
Compute the score per observation, evaluated at params
Parameters
----------
params : array_like
Array of parameters at which to evaluate the score
function.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
"""
params = np.array(params, ndmin=1)
return approx_fprime_cs(params, self.loglikeobs, args=(transformed,))
def hessian(self, params, transformed=True):
"""
Hessian matrix of the likelihood function, evaluated at the given
parameters
Parameters
----------
params : array_like
Array of parameters at which to evaluate the Hessian
function.
transformed : boolean, optional
Whether or not `params` is already transformed. Default is True.
"""
params = np.array(params, ndmin=1)
return approx_hess_cs(params, self.loglike)
def fit(self, start_params=None, transformed=True, cov_type='approx',
cov_kwds=None, method='bfgs', maxiter=100, full_output=1, disp=0,
callback=None, return_params=False, em_iter=5, search_reps=0,
search_iter=5, search_scale=1., **kwargs):
"""
Fits the model by maximum likelihood via Hamilton filter.
Parameters
----------
start_params : array_like, optional
Initial guess of the solution for the loglikelihood maximization.
If None, the default is given by Model.start_params.
transformed : boolean, optional
Whether or not `start_params` is already transformed. Default is
True.
cov_type : str, optional
The type of covariance matrix estimator to use. Can be one of
'approx', 'opg', 'robust', or 'none'. Default is 'approx'.
cov_kwds : dict or None, optional
Keywords for alternative covariance estimators
method : str, optional
The `method` determines which solver from `scipy.optimize`
is used, and it can be chosen from among the following strings:
- 'newton' for Newton-Raphson, 'nm' for Nelder-Mead
- 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno (BFGS)
- 'lbfgs' for limited-memory BFGS with optional box constraints
- 'powell' for modified Powell's method
- 'cg' for conjugate gradient
- 'ncg' for Newton-conjugate gradient
- 'basinhopping' for global basin-hopping solver
The explicit arguments in `fit` are passed to the solver,
with the exception of the basin-hopping solver. Each
solver has several optional arguments that are not the same across
solvers. See the notes section below (or scipy.optimize) for the
available arguments and for the list of explicit arguments that the
basin-hopping solver supports.
maxiter : int, optional
The maximum number of iterations to perform.
full_output : boolean, optional
Set to True to have all available output in the Results object's
mle_retvals attribute. The output is dependent on the solver.
See LikelihoodModelResults notes section for more information.
disp : boolean, optional
Set to True to print convergence messages.
callback : callable callback(xk), optional
Called after each iteration, as callback(xk), where xk is the
current parameter vector.
return_params : boolean, optional
Whether or not to return only the array of maximizing parameters.
Default is False.
em_iter : int, optional
Number of initial EM iteration steps used to improve starting
parameters.
search_reps : int, optional
Number of randomly drawn search parameters that are drawn around
`start_params` to try and improve starting parameters. Default is
0.
search_iter : int, optional
Number of initial EM iteration steps used to improve each of the
search parameter repetitions.
search_scale : float or array, optional.
Scale of variates for random start parameter search.
**kwargs
Additional keyword arguments to pass to the optimizer.
Returns
-------
MarkovSwitchingResults
"""
if start_params is None:
start_params = self.start_params
transformed = True
else:
start_params = np.array(start_params, ndmin=1)
# Random search for better start parameters
if search_reps > 0:
start_params = self._start_params_search(
search_reps, start_params=start_params,
transformed=transformed, em_iter=search_iter,
scale=search_scale)
transformed = True
# Get better start params through EM algorithm
if em_iter and not self.tvtp:
start_params = self._fit_em(start_params, transformed=transformed,
maxiter=em_iter, tolerance=0,
return_params=True)
transformed = True
if transformed:
start_params = self.untransform_params(start_params)
# Maximum likelihood estimation by scoring
fargs = (False,)
mlefit = super(MarkovSwitching, self).fit(start_params, method=method,
fargs=fargs,
maxiter=maxiter,
full_output=full_output,
disp=disp, callback=callback,
skip_hessian=True, **kwargs)
# Just return the fitted parameters if requested
if return_params:
result = self.transform_params(mlefit.params)
# Otherwise construct the results class if desired
else:
result = self.smooth(mlefit.params, transformed=False,
cov_type=cov_type, cov_kwds=cov_kwds)
result.mlefit = mlefit
result.mle_retvals = mlefit.mle_retvals
result.mle_settings = mlefit.mle_settings
return result
def _fit_em(self, start_params=None, transformed=True, cov_type='none',
cov_kwds=None, maxiter=50, tolerance=1e-6, full_output=True,
return_params=False, **kwargs):
"""
Fits the model using the Expectation-Maximization (EM) algorithm
Parameters
----------
start_params : array_like, optional
Initial guess of the solution for the loglikelihood maximization.
If None, the default is given by `start_params`.
transformed : boolean, optional
Whether or not `start_params` is already transformed. Default is
True.
cov_type : str, optional
The type of covariance matrix estimator to use. Can be one of
'approx', 'opg', 'robust', or 'none'. Default is 'none'.
cov_kwds : dict or None, optional
Keywords for alternative covariance estimators
maxiter : int, optional
The maximum number of iterations to perform.
tolerance : float, optional
The iteration stops when the difference between subsequent
loglikelihood values is less than this tolerance.
full_output : bool, optional
Set to True to have all available output in the Results object's
mle_retvals attribute. This includes all intermediate values for
parameters and loglikelihood values
return_params : boolean, optional
Whether or not to return only the array of maximizing parameters.
Default is False.
**kwargs
Additional keyword arguments to pass to the optimizer.
Notes
-----
This is a private method for finding good starting parameters for MLE
by scoring. It has not been tested for a thoroughly correct EM
implementation in all cases. It does not support TVTP transition
probabilities.
Returns
-------
MarkovSwitchingResults
"""
if start_params is None:
start_params = self.start_params
transformed = True
else:
start_params = np.array(start_params, ndmin=1)
if not transformed:
start_params = self.transform_params(start_params)
# Perform expectation-maximization
llf = []
params = [start_params]
i = 0
delta = 0
while i < maxiter and (i < 2 or (delta > tolerance)):
out = self._em_iteration(params[-1])
llf.append(out[0].llf)
params.append(out[1])
if i > 0:
delta = 2 * (llf[-1] - llf[-2]) / np.abs((llf[-1] + llf[-2]))
i += 1
# Just return the fitted parameters if requested
if return_params:
result = params[-1]
# Otherwise construct the results class if desired
else:
result = self.filter(params[-1], transformed=True,
cov_type=cov_type, cov_kwds=cov_kwds)
# Save the output
if full_output:
em_retvals = Bunch(**{'params': np.array(params),
'llf': np.array(llf),
'iter': i})
em_settings = Bunch(**{'tolerance': tolerance,
'maxiter': maxiter})
else:
em_retvals = None
em_settings = None
result.mle_retvals = em_retvals
result.mle_settings = em_settings
return result
def _em_iteration(self, params0):
"""
EM iteration
Notes
-----
The EM iteration in this base class only performs the EM step for
non-TVTP transition probabilities.
"""
params1 = np.zeros(params0.shape,
dtype=np.promote_types(np.float64, params0.dtype))
# Smooth at the given parameters
result = self.smooth(params0, transformed=True, return_raw=True)
# The EM with TVTP is not yet supported, just return the previous
# iteration parameters
if self.tvtp:
params1[self.parameters['regime_transition']] = (
params0[self.parameters['regime_transition']])
else:
regime_transition = self._em_regime_transition(result)
for i in range(self.k_regimes):
params1[self.parameters[i, 'regime_transition']] = (
regime_transition[i])
return result, params1
def _em_regime_transition(self, result):
"""
EM step for regime transition probabilities
"""
# Marginalize the smoothed joint probabilites to just S_t, S_{t-1} | T
tmp = result.smoothed_joint_probabilities
for i in range(tmp.ndim - 3):
tmp = np.sum(tmp, -2)
smoothed_joint_probabilities = tmp
# Transition parameters (recall we're not yet supporting TVTP here)
k_transition = len(self.parameters[0, 'regime_transition'])
regime_transition = np.zeros((self.k_regimes, k_transition))
for i in range(self.k_regimes): # S_{t_1}
for j in range(self.k_regimes - 1): # S_t
regime_transition[i, j] = (
np.sum(smoothed_joint_probabilities[j, i]) /
np.sum(result.smoothed_marginal_probabilities[i]))
# It may be the case that due to rounding error this estimates
# transition probabilities that sum to greater than one. If so,
# re-scale the probabilities and warn the user that something
# is not quite right
delta = np.sum(regime_transition[i]) - 1
if delta > 0:
warnings.warn('Invalid regime transition probabilities'
' estimated in EM iteration; probabilities have'
' been re-scaled to continue estimation.',
EstimationWarning)
regime_transition[i] /= 1 + delta + 1e-6
return regime_transition
def _start_params_search(self, reps, start_params=None, transformed=True,
em_iter=5, scale=1.):
"""
Search for starting parameters as random permutations of a vector
Parameters
----------
reps : int
Number of random permutations to try.
start_params : array, optional
Starting parameter vector. If not given, class-level start
parameters are used.
transformed : boolean, optional
If `start_params` was provided, whether or not those parameters
are already transformed. Default is True.
em_iter : int, optional
Number of EM iterations to apply to each random permutation.
scale : array or float, optional
Scale of variates for random start parameter search. Can be given
as an array of length equal to the number of parameters or as a
single scalar.
Notes
-----
This is a private method for finding good starting parameters for MLE
by scoring, where the defaults have been set heuristically.
"""
if start_params is None:
start_params = self.start_params
transformed = True
else:
start_params = np.array(start_params, ndmin=1)
# Random search is over untransformed space
if transformed:
start_params = self.untransform_params(start_params)
# Construct the standard deviations
scale = np.array(scale, ndmin=1)
if scale.size == 1:
scale = np.ones(self.k_params) * scale
if not scale.size == self.k_params:
raise ValueError('Scale of variates for random start'
' parameter search must be given for each'
' parameter or as a single scalar.')
# Construct the random variates
variates = np.zeros((reps, self.k_params))
for i in range(self.k_params):
variates[:, i] = scale[i] * np.random.uniform(-0.5, 0.5, size=reps)
llf = self.loglike(start_params, transformed=False)
params = start_params
for i in range(reps):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
try:
proposed_params = self._fit_em(
start_params + variates[i], transformed=False,
maxiter=em_iter, return_params=True)
proposed_llf = self.loglike(proposed_params)
if proposed_llf > llf:
llf = proposed_llf
params = self.untransform_params(proposed_params)
except Exception: # FIXME: catch something specific
pass
# Return transformed parameters
return self.transform_params(params)
@property
def start_params(self):
"""
(array) Starting parameters for maximum likelihood estimation.
"""
params = np.zeros(self.k_params, dtype=np.float64)
# Transition probabilities
if self.tvtp:
params[self.parameters['regime_transition']] = 0.
else:
params[self.parameters['regime_transition']] = 1. / self.k_regimes
return params
@property
def param_names(self):
"""
(list of str) List of human readable parameter names (for parameters
actually included in the model).
"""
param_names = np.zeros(self.k_params, dtype=object)
# Transition probabilities
if self.tvtp:
# TODO add support for exog_tvtp_names
param_names[self.parameters['regime_transition']] = [
'p[%d->%d].tvtp%d' % (j, i, k)
for i in range(self.k_regimes-1)
for k in range(self.k_tvtp)
for j in range(self.k_regimes)
]
else:
param_names[self.parameters['regime_transition']] = [
'p[%d->%d]' % (j, i)
for i in range(self.k_regimes-1)
for j in range(self.k_regimes)]
return param_names.tolist()
def transform_params(self, unconstrained):
"""
Transform unconstrained parameters used by the optimizer to constrained
parameters used in likelihood evaluation
Parameters
----------
unconstrained : array_like
Array of unconstrained parameters used by the optimizer, to be
transformed.
Returns
-------
constrained : array_like
Array of constrained parameters which may be used in likelihood
evalation.
Notes
-----
In the base class, this only transforms the transition-probability-
related parameters.
"""
constrained = np.array(unconstrained, copy=True)
constrained = constrained.astype(
np.promote_types(np.float64, constrained.dtype))
# Nothing to do for transition probabilities if TVTP
if self.tvtp:
constrained[self.parameters['regime_transition']] = (
unconstrained[self.parameters['regime_transition']])
# Otherwise do logistic transformation
else:
# Transition probabilities
for i in range(self.k_regimes):
tmp1 = unconstrained[self.parameters[i, 'regime_transition']]
tmp2 = np.r_[0, tmp1]
constrained[self.parameters[i, 'regime_transition']] = np.exp(
tmp1 - logsumexp(tmp2))
# Do not do anything for the rest of the parameters
return constrained
def _untransform_logistic(self, unconstrained, constrained):
"""
Function to allow using a numerical root-finder to reverse the
logistic transform.
"""
resid = np.zeros(unconstrained.shape, dtype=unconstrained.dtype)
exp = np.exp(unconstrained)
sum_exp = np.sum(exp)
for i in range(len(unconstrained)):
resid[i] = (unconstrained[i] -
np.log(1 + sum_exp - exp[i]) +
np.log(1 / constrained[i] - 1))
return resid
def untransform_params(self, constrained):
"""
Transform constrained parameters used in likelihood evaluation
to unconstrained parameters used by the optimizer
Parameters
----------
constrained : array_like
Array of constrained parameters used in likelihood evalution, to be
transformed.
Returns
-------
unconstrained : array_like
Array of unconstrained parameters used by the optimizer.
Notes
-----
In the base class, this only untransforms the transition-probability-
related parameters.
"""
unconstrained = np.array(constrained, copy=True)
unconstrained = unconstrained.astype(
np.promote_types(np.float64, unconstrained.dtype))
# Nothing to do for transition probabilities if TVTP
if self.tvtp:
unconstrained[self.parameters['regime_transition']] = (
constrained[self.parameters['regime_transition']])
# Otherwise reverse logistic transformation
else:
for i in range(self.k_regimes):
s = self.parameters[i, 'regime_transition']
if self.k_regimes == 2:
unconstrained[s] = -np.log(1. / constrained[s] - 1)
else:
from scipy.optimize import root
out = root(self._untransform_logistic,
np.zeros(unconstrained[s].shape,
unconstrained.dtype),
args=(constrained[s],))
if not out['success']:
raise ValueError('Could not untransform parameters.')
unconstrained[s] = out['x']
# Do not do anything for the rest of the parameters
return unconstrained
class HamiltonFilterResults(object):
"""
Results from applying the Hamilton filter to a state space model.
Parameters
----------
model : Representation
A Statespace representation
Attributes
----------
nobs : int
Number of observations.
k_endog : int
The dimension of the observation series.
k_regimes : int
The number of unobserved regimes.
regime_transition : array
The regime transition matrix.
initialization : str
Initialization method for regime probabilities.
initial_probabilities : array
Initial regime probabilities
conditional_likelihoods : array
The likelihood values at each time period, conditional on regime.
predicted_joint_probabilities : array
Predicted joint probabilities at each time period.
filtered_marginal_probabilities : array
Filtered marginal probabilities at each time period.
filtered_joint_probabilities : array
Filtered joint probabilities at each time period.
joint_likelihoods : array
The likelihood values at each time period.
llf_obs : array
The loglikelihood values at each time period.
"""
def __init__(self, model, result):
self.model = model
self.nobs = model.nobs
self.order = model.order
self.k_regimes = model.k_regimes
attributes = ['regime_transition', 'initial_probabilities',
'conditional_likelihoods',
'predicted_joint_probabilities',
'filtered_marginal_probabilities',
'filtered_joint_probabilities',
'joint_likelihoods']
for name in attributes:
setattr(self, name, getattr(result, name))
self.initialization = model._initialization
self.llf_obs = np.log(self.joint_likelihoods)
self.llf = np.sum(self.llf_obs)
# Subset transition if necessary (e.g. for Markov autoregression)
if self.regime_transition.shape[-1] > 1 and self.order > 0:
self.regime_transition = self.regime_transition[..., self.order:]
# Cache for predicted marginal probabilities
self._predicted_marginal_probabilities = None
@property
def predicted_marginal_probabilities(self):
if self._predicted_marginal_probabilities is None:
self._predicted_marginal_probabilities = (
self.predicted_joint_probabilities)
for i in range(self._predicted_marginal_probabilities.ndim - 2):
self._predicted_marginal_probabilities = np.sum(
self._predicted_marginal_probabilities, axis=-2)
return self._predicted_marginal_probabilities
@property
def expected_durations(self):
"""
(array) Expected duration of a regime, possibly time-varying.
"""
return 1. / (1 - np.diagonal(self.regime_transition).squeeze())
class KimSmootherResults(HamiltonFilterResults):
"""
Results from applying the Kim smoother to a Markov switching model.
Parameters
----------
model : MarkovSwitchingModel
The model object.
result : dict
A dictionary containing two keys: 'smoothd_joint_probabilities' and
'smoothed_marginal_probabilities'.
Attributes
----------
nobs : int
Number of observations.
k_endog : int
The dimension of the observation series.
k_states : int
The dimension of the unobserved state process.
"""
def __init__(self, model, result):
super(KimSmootherResults, self).__init__(model, result)
attributes = ['smoothed_joint_probabilities',
'smoothed_marginal_probabilities']
for name in attributes:
setattr(self, name, getattr(result, name))
class MarkovSwitchingResults(tsbase.TimeSeriesModelResults):
r"""
Class to hold results from fitting a Markov switching model
Parameters
----------
model : MarkovSwitching instance
The fitted model instance
params : array
Fitted parameters
filter_results : HamiltonFilterResults or KimSmootherResults instance
The underlying filter and, optionally, smoother output
cov_type : string
The type of covariance matrix estimator to use. Can be one of 'approx',
'opg', 'robust', or 'none'.
Attributes
----------
model : Model instance
A reference to the model that was fit.
filter_results : HamiltonFilterResults or KimSmootherResults instance
The underlying filter and, optionally, smoother output
nobs : float
The number of observations used to fit the model.
params : array
The parameters of the model.
scale : float
This is currently set to 1.0 and not used by the model or its results.
"""
use_t = False
def __init__(self, model, params, results, cov_type='opg', cov_kwds=None,
**kwargs):
self.data = model.data
tsbase.TimeSeriesModelResults.__init__(self, model, params,
normalized_cov_params=None,
scale=1.)
# Save the filter / smoother output
self.filter_results = results
if isinstance(results, KimSmootherResults):
self.smoother_results = results
else:
self.smoother_results = None
# Dimensions
self.nobs = model.nobs
self.order = model.order
self.k_regimes = model.k_regimes
# Setup covariance matrix notes dictionary
if not hasattr(self, 'cov_kwds'):
self.cov_kwds = {}
self.cov_type = cov_type
# Setup the cache
self._cache = {}
# Handle covariance matrix calculation
if cov_kwds is None:
cov_kwds = {}
self._cov_approx_complex_step = (
cov_kwds.pop('approx_complex_step', True))
self._cov_approx_centered = cov_kwds.pop('approx_centered', False)
try:
self._rank = None
self._get_robustcov_results(cov_type=cov_type, use_self=True,
**cov_kwds)
except np.linalg.LinAlgError:
self._rank = 0
k_params = len(self.params)
self.cov_params_default = np.zeros((k_params, k_params)) * np.nan
self.cov_kwds['cov_type'] = (
'Covariance matrix could not be calculated: singular.'
' information matrix.')
# Copy over arrays
attributes = ['regime_transition', 'initial_probabilities',
'conditional_likelihoods',
'predicted_marginal_probabilities',
'predicted_joint_probabilities',
'filtered_marginal_probabilities',
'filtered_joint_probabilities',
'joint_likelihoods', 'expected_durations']
for name in attributes:
setattr(self, name, getattr(self.filter_results, name))
attributes = ['smoothed_joint_probabilities',
'smoothed_marginal_probabilities']
for name in attributes:
if self.smoother_results is not None:
setattr(self, name, getattr(self.smoother_results, name))
else:
setattr(self, name, None)
# Reshape some arrays to long-format
self.predicted_marginal_probabilities = (
self.predicted_marginal_probabilities.T)
self.filtered_marginal_probabilities = (
self.filtered_marginal_probabilities.T)
if self.smoother_results is not None:
self.smoothed_marginal_probabilities = (
self.smoothed_marginal_probabilities.T)
# Make into Pandas arrays if using Pandas data
if isinstance(self.data, PandasData):
index = self.data.row_labels
if self.expected_durations.ndim > 1:
self.expected_durations = pd.DataFrame(
self.expected_durations, index=index)
self.predicted_marginal_probabilities = pd.DataFrame(
self.predicted_marginal_probabilities, index=index)
self.filtered_marginal_probabilities = pd.DataFrame(
self.filtered_marginal_probabilities, index=index)
if self.smoother_results is not None:
self.smoothed_marginal_probabilities = pd.DataFrame(
self.smoothed_marginal_probabilities, index=index)
def _get_robustcov_results(self, cov_type='opg', **kwargs):
from statsmodels.base.covtype import descriptions
use_self = kwargs.pop('use_self', False)
if use_self:
res = self
else:
raise NotImplementedError
res = self.__class__(
self.model, self.params,
normalized_cov_params=self.normalized_cov_params,
scale=self.scale)
# Set the new covariance type
res.cov_type = cov_type
res.cov_kwds = {}
approx_type_str = 'complex-step'
# Calculate the new covariance matrix
k_params = len(self.params)
if k_params == 0:
res.cov_params_default = np.zeros((0, 0))
res._rank = 0
res.cov_kwds['description'] = 'No parameters estimated.'
elif cov_type == 'custom':
res.cov_type = kwargs['custom_cov_type']
res.cov_params_default = kwargs['custom_cov_params']
res.cov_kwds['description'] = kwargs['custom_description']
res._rank = np.linalg.matrix_rank(res.cov_params_default)
elif cov_type == 'none':
res.cov_params_default = np.zeros((k_params, k_params)) * np.nan
res._rank = np.nan
res.cov_kwds['description'] = descriptions['none']
elif self.cov_type == 'approx':
res.cov_params_default = res.cov_params_approx
res.cov_kwds['description'] = descriptions['approx'].format(
approx_type=approx_type_str)
elif self.cov_type == 'opg':
res.cov_params_default = res.cov_params_opg
res.cov_kwds['description'] = descriptions['OPG'].format(
approx_type=approx_type_str)
elif self.cov_type == 'robust':
res.cov_params_default = res.cov_params_robust
res.cov_kwds['description'] = descriptions['robust'].format(
approx_type=approx_type_str)
else:
raise NotImplementedError('Invalid covariance matrix type.')
return res
@cache_readonly
def aic(self):
"""
(float) Akaike Information Criterion
"""
# return -2*self.llf + 2*self.params.shape[0]
return aic(self.llf, self.nobs, self.params.shape[0])
@cache_readonly
def bic(self):
"""
(float) Bayes Information Criterion
"""
# return -2*self.llf + self.params.shape[0]*np.log(self.nobs)
return bic(self.llf, self.nobs, self.params.shape[0])
@cache_readonly
def cov_params_approx(self):
"""
(array) The variance / covariance matrix. Computed using the numerical
Hessian approximated by complex step or finite differences methods.
"""
evaluated_hessian = self.model.hessian(self.params, transformed=True)
neg_cov, singular_values = pinv_extended(evaluated_hessian)
if self._rank is None:
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
return -neg_cov
@cache_readonly
def cov_params_opg(self):
"""
(array) The variance / covariance matrix. Computed using the outer
product of gradients method.
"""
score_obs = self.model.score_obs(self.params, transformed=True).T
cov_params, singular_values = pinv_extended(
np.inner(score_obs, score_obs))
if self._rank is None:
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
return cov_params
@cache_readonly
def cov_params_robust(self):
"""
(array) The QMLE variance / covariance matrix. Computed using the
numerical Hessian as the evaluated hessian.
"""
cov_opg = self.cov_params_opg
evaluated_hessian = self.model.hessian(self.params, transformed=True)
cov_params, singular_values = pinv_extended(
np.dot(np.dot(evaluated_hessian, cov_opg), evaluated_hessian)
)
if self._rank is None:
self._rank = np.linalg.matrix_rank(np.diag(singular_values))
return cov_params
@cache_readonly
def fittedvalues(self):
"""
(array) The predicted values of the model. An (nobs x k_endog) array.
"""
return self.model.predict(self.params)
@cache_readonly
def hqic(self):
"""
(float) Hannan-Quinn Information Criterion
"""
# return -2*self.llf + 2*np.log(np.log(self.nobs))*self.params.shape[0]
return hqic(self.llf, self.nobs, self.params.shape[0])
@cache_readonly
def llf_obs(self):
"""
(float) The value of the log-likelihood function evaluated at `params`.
"""
return self.model.loglikeobs(self.params)
@cache_readonly
def llf(self):
"""
(float) The value of the log-likelihood function evaluated at `params`.
"""
return self.model.loglike(self.params)
@cache_readonly
def resid(self):
"""
(array) The model residuals. An (nobs x k_endog) array.
"""
return self.model.endog - self.fittedvalues
def predict(self, start=None, end=None, probabilities=None,
conditional=False):
"""
In-sample prediction and out-of-sample forecasting
Parameters
----------
start : int, str, or datetime, optional
Zero-indexed observation number at which to start forecasting,
i.e., the first forecast is start. Can also be a date string to
parse or a datetime type. Default is the the zeroth observation.
end : int, str, or datetime, optional
Zero-indexed observation number at which to end forecasting, i.e.,
the last forecast is end. Can also be a date string to
parse or a datetime type. However, if the dates index does not
have a fixed frequency, end must be an integer index if you
want out of sample prediction. Default is the last observation in
the sample.
probabilities : string or array_like, optional
Specifies the weighting probabilities used in constructing the
prediction as a weighted average. If a string, can be 'predicted',
'filtered', or 'smoothed'. Otherwise can be an array of
probabilities to use. Default is smoothed.
conditional: boolean or int, optional
Whether or not to return predictions conditional on current or
past regimes. If False, returns a single vector of weighted
predictions. If True or 1, returns predictions conditional on the
current regime. For larger integers, returns predictions
conditional on the current regime and some number of past regimes.
Returns
-------
predict : array
Array of out of in-sample predictions and / or out-of-sample
forecasts. An (npredict x k_endog) array.
"""
return self.model.predict(self.params, start=start, end=end,
probabilities=probabilities,
conditional=conditional)
def forecast(self, steps=1, **kwargs):
"""
Out-of-sample forecasts
Parameters
----------
steps : int, str, or datetime, optional
If an integer, the number of steps to forecast from the end of the
sample. Can also be a date string to parse or a datetime type.
However, if the dates index does not have a fixed frequency, steps
must be an integer. Default
**kwargs
Additional arguments may required for forecasting beyond the end
of the sample. See `FilterResults.predict` for more details.
Returns
-------
forecast : array
Array of out of sample forecasts. A (steps x k_endog) array.
"""
raise NotImplementedError
def summary(self, alpha=.05, start=None, title=None, model_name=None,
display_params=True):
"""
Summarize the Model
Parameters
----------
alpha : float, optional
Significance level for the confidence intervals. Default is 0.05.
start : int, optional
Integer of the start observation. Default is 0.
title : str, optional
The title of the summary table.
model_name : string
The name of the model used. Default is to use model class name.
display_params : boolean, optional
Whether or not to display tables of estimated parameters. Default
is True. Usually only used internally.
Returns
-------
summary : Summary instance
This holds the summary table and text, which can be printed or
converted to various output formats.
See Also
--------
statsmodels.iolib.summary.Summary
"""
from statsmodels.iolib.summary import Summary
# Model specification results
model = self.model
if title is None:
title = 'Markov Switching Model Results'
if start is None:
start = 0
if self.data.dates is not None:
dates = self.data.dates
d = dates[start]
sample = ['%02d-%02d-%02d' % (d.month, d.day, d.year)]
d = dates[-1]
sample += ['- ' + '%02d-%02d-%02d' % (d.month, d.day, d.year)]
else:
sample = [str(start), ' - ' + str(self.model.nobs)]
# Standardize the model name as a list of str
if model_name is None:
model_name = model.__class__.__name__
# Create the tables
if not isinstance(model_name, list):
model_name = [model_name]
top_left = [('Dep. Variable:', None)]
top_left.append(('Model:', [model_name[0]]))
for i in range(1, len(model_name)):
top_left.append(('', ['+ ' + model_name[i]]))
top_left += [
('Date:', None),
('Time:', None),
('Sample:', [sample[0]]),
('', [sample[1]])
]
top_right = [
('No. Observations:', [self.model.nobs]),
('Log Likelihood', ["%#5.3f" % self.llf]),
('AIC', ["%#5.3f" % self.aic]),
('BIC', ["%#5.3f" % self.bic]),
('HQIC', ["%#5.3f" % self.hqic])
]
if hasattr(self, 'cov_type'):
top_left.append(('Covariance Type:', [self.cov_type]))
summary = Summary()
summary.add_table_2cols(self, gleft=top_left, gright=top_right,
title=title)
# Make parameters tables for each regime
from statsmodels.iolib.summary import summary_params
import re
def make_table(self, mask, title, strip_end=True):
res = (self, self.params[mask], self.bse[mask],
self.tvalues[mask], self.pvalues[mask],
self.conf_int(alpha)[mask])
param_names = [
re.sub(r'\[\d+\]$', '', name) for name in
np.array(self.data.param_names)[mask].tolist()
]
return summary_params(res, yname=None, xname=param_names,
alpha=alpha, use_t=False, title=title)
params = model.parameters
regime_masks = [[] for i in range(model.k_regimes)]
other_masks = {}
for key, switching in params.switching.items():
k_params = len(switching)
if key == 'regime_transition':
continue
other_masks[key] = []
for i in range(k_params):
if switching[i]:
for j in range(self.k_regimes):
regime_masks[j].append(params[j, key][i])
else:
other_masks[key].append(params[0, key][i])
for i in range(self.k_regimes):
mask = regime_masks[i]
if len(mask) > 0:
table = make_table(self, mask, 'Regime %d parameters' % i)
summary.tables.append(table)
mask = []
for key, _mask in other_masks.items():
mask.extend(_mask)
if len(mask) > 0:
table = make_table(self, mask, 'Non-switching parameters')
summary.tables.append(table)
# Transition parameters
mask = params['regime_transition']
table = make_table(self, mask, 'Regime transition parameters')
summary.tables.append(table)
# Add warnings/notes, added to text format only
etext = []
if hasattr(self, 'cov_type') and 'description' in self.cov_kwds:
etext.append(self.cov_kwds['description'])
if self._rank < len(self.params):
etext.append("Covariance matrix is singular or near-singular,"
" with condition number %6.3g. Standard errors may be"
" unstable." % np.linalg.cond(self.cov_params()))
if etext:
etext = ["[{0}] {1}".format(i + 1, text)
for i, text in enumerate(etext)]
etext.insert(0, "Warnings:")
summary.add_extra_txt(etext)
return summary
class MarkovSwitchingResultsWrapper(wrap.ResultsWrapper):
_attrs = {
'cov_params_approx': 'cov',
'cov_params_default': 'cov',
'cov_params_opg': 'cov',
'cov_params_robust': 'cov',
}
_wrap_attrs = wrap.union_dicts(tsbase.TimeSeriesResultsWrapper._wrap_attrs,
_attrs)
_methods = {
'forecast': 'dates',
}
_wrap_methods = wrap.union_dicts(
tsbase.TimeSeriesResultsWrapper._wrap_methods, _methods)
wrap.populate_wrapper(MarkovSwitchingResultsWrapper, # noqa:E305
MarkovSwitchingResults)