statsmodels.base.model.GenericLikelihoodModelResults¶
-
class
statsmodels.base.model.
GenericLikelihoodModelResults
(model, mlefit)[source]¶ A results class for the discrete dependent variable models.
..Warning :
The following description has not been updated to this version/class. Where are AIC, BIC, ….? docstring looks like copy from discretemod
- Parameters
- modelA DiscreteModel instance
- mlefitinstance of LikelihoodResults
This contains the numerical optimization results as returned by LikelihoodModel.fit(), in a superclass of GnericLikelihoodModels
- Attributes
aic
floatAkaike information criterion
bic
floatBayesian information criterion
bse
arrayThe standard errors of the parameter estimates.
- df_residfloat
See model definition.
- df_modelfloat
See model definition.
- fitted_valuesarray
Linear predictor XB.
llf
floatLog-likelihood of model
- llnullfloat
Value of the constant-only loglikelihood
- llrfloat
Likelihood ratio chi-squared statistic; -2*(llnull - llf)
- llr_pvaluefloat
The chi-squared probability of getting a log-likelihood ratio statistic greater than llr. llr has a chi-squared distribution with degrees of freedom df_model.
- prsquaredfloat
McFadden’s pseudo-R-squared. 1 - (llf/llnull)
Methods
aic
()Akaike information criterion
bic
()Bayesian information criterion
bootstrap
([nrep, method, disp, store])simple bootstrap to get mean and variance of estimator
bse
()The standard errors of the parameter estimates.
bsejac
()standard deviation of parameter estimates based on covjac
bsejhj
()standard deviation of parameter estimates based on covHJH
conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
covjac
()covariance of parameters based on outer product of jacobian of log-likelihood
covjhj
()covariance of parameters based on HJJH
Model WC
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
get_nlfun
(fun)This is not Implemented
hessv
()cached Hessian of log-likelihood
initialize
(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf
()Log-likelihood of model
load
(fname)load a pickle, (class method)
See specific model class docstring
predict
([exog, transform])Call self.model.predict with self.params as the first argument.
pvalues
()The two-tailed p values for the t-stats of the params.
remove data arrays, all nobs arrays from result and model
save
(fname[, remove_data])save a pickle of this instance
cached Jacobian of log-likelihood
summary
([yname, xname, title, alpha])Summarize the Regression Results
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues
()Return the t-statistic for a given parameter estimate.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns