from __future__ import print_function
import numpy as np
import statsmodels.api as sm
Load data from Spector and Mazzeo (1980). Examples follow Greene's Econometric Analysis Ch. 21 (5th Edition).
spector_data = sm.datasets.spector.load(as_pandas=False)
spector_data.exog = sm.add_constant(spector_data.exog, prepend=False)
Inspect the data:
print(spector_data.exog[:5,:])
print(spector_data.endog[:5])
lpm_mod = sm.OLS(spector_data.endog, spector_data.exog)
lpm_res = lpm_mod.fit()
print('Parameters: ', lpm_res.params[:-1])
logit_mod = sm.Logit(spector_data.endog, spector_data.exog)
logit_res = logit_mod.fit(disp=0)
print('Parameters: ', logit_res.params)
Marginal Effects
margeff = logit_res.get_margeff()
print(margeff.summary())
As in all the discrete data models presented below, we can print a nice summary of results:
print(logit_res.summary())
probit_mod = sm.Probit(spector_data.endog, spector_data.exog)
probit_res = probit_mod.fit()
probit_margeff = probit_res.get_margeff()
print('Parameters: ', probit_res.params)
print('Marginal effects: ')
print(probit_margeff.summary())
Load data from the American National Election Studies:
anes_data = sm.datasets.anes96.load(as_pandas=False)
anes_exog = anes_data.exog
anes_exog = sm.add_constant(anes_exog, prepend=False)
Inspect the data:
print(anes_data.exog[:5,:])
print(anes_data.endog[:5])
Fit MNL model:
mlogit_mod = sm.MNLogit(anes_data.endog, anes_exog)
mlogit_res = mlogit_mod.fit()
print(mlogit_res.params)
Load the Rand data. Note that this example is similar to Cameron and Trivedi's Microeconometrics
Table 20.5, but it is slightly different because of minor changes in the data.
rand_data = sm.datasets.randhie.load(as_pandas=False)
rand_exog = rand_data.exog.view(float).reshape(len(rand_data.exog), -1)
rand_exog = sm.add_constant(rand_exog, prepend=False)
Fit Poisson model:
poisson_mod = sm.Poisson(rand_data.endog, rand_exog)
poisson_res = poisson_mod.fit(method="newton")
print(poisson_res.summary())
The negative binomial model gives slightly different results.
mod_nbin = sm.NegativeBinomial(rand_data.endog, rand_exog)
res_nbin = mod_nbin.fit(disp=False)
print(res_nbin.summary())
The default method for fitting discrete data MLE models is Newton-Raphson. You can use other solvers by using the method
argument:
mlogit_res = mlogit_mod.fit(method='bfgs', maxiter=100)
print(mlogit_res.summary())