statsmodels.base.distributed_estimation.DistributedResults

class statsmodels.base.distributed_estimation.DistributedResults(model, params)[source]

Class to contain model results

Parameters
modelclass instance

class instance for model used for distributed data, this particular instance uses fake data and is really only to allow use of methods like predict.

paramsarray

parameter estimates from the fit model.

Methods

bse()

The standard errors of the parameter estimates.

conf_int([alpha, cols, method])

Returns the confidence interval of the fitted parameters.

cov_params([r_matrix, column, scale, cov_p, …])

Returns the variance/covariance matrix.

f_test(r_matrix[, cov_p, scale, invcov])

Compute the F-test for a joint linear hypothesis.

initialize(model, params, **kwd)

Initialize (possibly re-initialize) a Results instance.

llf()

Log-likelihood of model

load(fname)

load a pickle, (class method)

normalized_cov_params()

See specific model class docstring

predict(exog, *args, **kwargs)

Calls self.model.predict for the provided exog.

pvalues()

The two-tailed p values for the t-stats of the params.

remove_data()

remove data arrays, all nobs arrays from result and model

save(fname[, remove_data])

save a pickle of this instance

summary()

Summary

t_test(r_matrix[, cov_p, scale, use_t])

Compute a t-test for a each linear hypothesis of the form Rb = q

t_test_pairwise(term_name[, method, alpha, …])

perform pairwise t_test with multiple testing corrected p-values

tvalues()

Return the t-statistic for a given parameter estimate.

wald_test(r_matrix[, cov_p, scale, invcov, …])

Compute a Wald-test for a joint linear hypothesis.

wald_test_terms([skip_single, …])

Compute a sequence of Wald tests for terms over multiple columns