statsmodels.discrete.count_model.ZeroInflatedPoissonResults¶
-
class
statsmodels.discrete.count_model.
ZeroInflatedPoissonResults
(model, mlefit, cov_type='nonrobust', cov_kwds=None, use_t=None)[source]¶ A results class for Zero Inflated Poisson
- Parameters
- modelA DiscreteModel instance
- paramsarray-like
The parameters of a fitted model.
- hessianarray-like
The hessian of the fitted model.
- scalefloat
A scale parameter for the covariance matrix.
- Attributes
- df_residfloat
See model definition.
- df_modelfloat
See model definition.
llf
floatLog-likelihood of model
Methods
aic
()Akaike information criterion.
bic
()Bayesian information criterion.
bse
()The standard errors of the parameter estimates.
conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
Linear predictor XB.
get_margeff
([at, method, atexog, dummy, count])Get marginal effects of the fitted model.
initialize
(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf
()Log-likelihood of model
llnull
()Value of the constant-only loglikelihood
llr
()Likelihood ratio chi-squared statistic; -2*(llnull - llf)
The chi-squared probability of getting a log-likelihood ratio statistic greater than llr.
load
(fname)load a pickle, (class method)
See specific model class docstring
predict
([exog, transform])Call self.model.predict with self.params as the first argument.
McFadden’s pseudo-R-squared.
pvalues
()The two-tailed p values for the t-stats of the params.
remove data arrays, all nobs arrays from result and model
resid
()Residuals
Respnose residuals.
save
(fname[, remove_data])save a pickle of this instance
set_null_options
([llnull, attach_results])set fit options for Null (constant-only) model
summary
([yname, xname, title, alpha, yname_list])Summarize the Regression Results
summary2
([yname, xname, title, alpha, …])Experimental function to summarize regression results
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues
()Return the t-statistic for a given parameter estimate.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns