statsmodels.duration.hazard_regression.PHRegResults¶
-
class
statsmodels.duration.hazard_regression.
PHRegResults
(model, params, cov_params, scale=1.0, covariance_type='naive')[source]¶ Class to contain results of fitting a Cox proportional hazards survival model.
PHregResults inherits from statsmodels.LikelihoodModelResults
- Parameters
- See statsmodels.LikelihoodModelResults
See also
statsmodels.LikelihoodModelResults
- Attributes
- modelclass instance
PHreg model instance that called fit.
normalized_cov_params
arraySee specific model class docstring
- paramsarray
The coefficients of the fitted model. Each coefficient is the log hazard ratio corresponding to a 1 unit difference in a single covariate while holding the other covariates fixed.
bse
arrayReturns the standard errors of the parameter estimates.
Methods
A list (corresponding to the strata) containing the baseline cumulative hazard function evaluated at the event points.
A list (corresponding to the strata) containing function objects that calculate the cumulative hazard function.
bse
()Returns the standard errors of the parameter estimates.
conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
Returns a scipy distribution object corresponding to the distribution of uncensored endog (duration) values for each case.
initialize
(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf
()Log-likelihood of model
load
(fname)load a pickle, (class method)
The martingale residuals.
See specific model class docstring
predict
([endog, exog, strata, offset, …])Returns predicted values from the proportional hazards regression model.
pvalues
()The two-tailed p values for the t-stats of the params.
remove data arrays, all nobs arrays from result and model
save
(fname[, remove_data])save a pickle of this instance
A matrix containing the Schoenfeld residuals.
A matrix containing the score residuals.
Returns the standard errors of the parameter estimates.
summary
([yname, xname, title, alpha])Summarize the proportional hazards regression results.
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues
()Return the t-statistic for a given parameter estimate.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
The average covariate values within the at-risk set at each event time point, weighted by hazard.