statsmodels.gam.generalized_additive_model.GLMGamResults¶
-
class
statsmodels.gam.generalized_additive_model.
GLMGamResults
(model, params, normalized_cov_params, scale, **kwds)[source]¶ Results class for generalized additive models, GAM.
This inherits from GLMResults.
Warning: some inherited methods might not correctly take account of the penalization
GLMGamResults inherits from GLMResults All methods related to the loglikelihood function return the penalized values.
Notes
status: experimental
- Attributes
- edf
list of effective degrees of freedom for each column of the design matrix.
- hat_matrix_diag
diagonal of hat matrix
- gcv
generalized cross-validation criterion computed as
gcv = scale / (1. - hat_matrix_trace / self.nobs)**2
- cv
cross-validation criterion computed as
cv = ((resid_pearson / (1 - hat_matrix_diag))**2).sum() / nobs
Methods
aic
()Akaike Information Criterion -2 * llf + 2*(df_model + 1)
bic
()Bayes Information Criterion deviance - df_resid * log(nobs)
bse
()The standard errors of the parameter estimates.
conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
deviance
()See statsmodels.families.family for the distribution-specific deviance functions.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
Linear predicted values for the fitted model.
get_hat_matrix_diag
([observed, _axis])Compute the diagonal of the hat matrix
get_influence
([observed])Get an instance of GLMInfluence with influence and outlier measures
get_prediction
([exog, exog_smooth, transform])compute prediction results
initialize
(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf
()Value of the loglikelihood function evalued at params.
llnull
()Log-likelihood of the model fit with a constant as the only regressor
load
(fname)load a pickle, (class method)
mu
()See GLM docstring.
See specific model class docstring
null
()Fitted values of the null model
The value of the deviance function for the model fit with a constant as the only regressor.
partial_values
(smooth_index[, include_constant])contribution of a smooth term to the linear prediction
Pearson’s Chi-Squared statistic is defined as the sum of the squares of the Pearson residuals.
plot_added_variable
(focus_exog[, …])Create an added variable plot for a fitted regression model.
plot_ceres_residuals
(focus_exog[, frac, …])Produces a CERES (Conditional Expectation Partial Residuals) plot for a fitted regression model.
plot_partial
(smooth_index[, plot_se, cpr, …])plot the contribution of a smooth term to the linear prediction
plot_partial_residuals
(focus_exog[, ax])Create a partial residual, or ‘component plus residual’ plot for a fited regression model.
predict
([exog, exog_smooth, transform])”
pvalues
()The two-tailed p values for the t-stats of the params.
remove data arrays, all nobs arrays from result and model
Anscombe residuals.
Scaled Anscombe residuals.
Unscaled Anscombe residuals.
Deviance residuals.
Pearson residuals.
Respnose residuals.
Working residuals.
save
(fname[, remove_data])save a pickle of this instance
summary
([yname, xname, title, alpha])Summarize the Regression Results
summary2
([yname, xname, title, alpha, …])Experimental summary for regression Results
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
test_significance
(smooth_index)hypothesis test that a smooth component is zero.
tvalues
()Return the t-statistic for a given parameter estimate.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
cv
edf
gcv
hat_matrix_diag
hat_matrix_trace