statsmodels.genmod.families.family.Tweedie

class statsmodels.genmod.families.family.Tweedie(link=None, var_power=1.0, eql=False)[source]

Tweedie family.

Parameters
linka link instance, optional

The default link for the Tweedie family is the log link. Available links are log and Power. See statsmodels.genmod.families.links for more information.

var_powerfloat, optional

The variance power. The default is 1.

eqlbool

If True, the Extended Quasi-Likelihood is used, else the likelihood is used (however the latter is not implemented). If eql is True, var_power must be between 1 and 2.

Notes

Logliklihood function not implemented because of the complexity of calculating an infinite series of summations. The variance power can be estimated using the estimate_tweedie_power function that is part of the statsmodels.genmod.generalized_linear_model.GLM class.

Attributes
Tweedie.linka link instance

The link function of the Tweedie instance

Tweedie.variancevarfunc instance

variance is an instance of statsmodels.genmod.families.varfuncs.Power

Tweedie.var_powerfloat

The power of the variance function.

Methods

deviance(endog, mu[, var_weights, …])

The deviance function evaluated at (endog, mu, var_weights, freq_weights, scale) for the distribution.

fitted(lin_pred)

Fitted values based on linear predictors lin_pred.

loglike(endog, mu[, var_weights, …])

The log-likelihood function in terms of the fitted mean response.

loglike_obs(endog, mu[, var_weights, scale])

The log-likelihood function for each observation in terms of the fitted mean response for the Tweedie distribution.

predict(mu)

Linear predictors based on given mu values.

resid_anscombe(endog, mu[, var_weights, scale])

The Anscombe residuals

resid_dev(endog, mu[, var_weights, scale])

The deviance residuals

starting_mu(y)

Starting value for mu in the IRLS algorithm.

variance

weights(mu)

Weights for IRLS steps