statsmodels.genmod.generalized_estimating_equations.GEE.fit_regularized¶
method
-
GEE.
fit_regularized
(pen_wt, scad_param=3.7, maxiter=100, ddof_scale=None, update_assoc=5, ctol=1e-05, ztol=0.001, eps=1e-06)[source]¶ Regularized estimation for GEE.
- Parameters
- pen_wtfloat
The penalty weight (a non-negative scalar).
- scad_paramfloat
Non-negative scalar determining the shape of the Scad penalty.
- maxiterinteger
The maximum number of iterations.
- ddof_scaleinteger
Value to subtract from nobs when calculating the denominator degrees of freedom for t-statistics, defaults to the number of columns in exog.
- update_associnteger
The dependence parameters are updated every update_assoc iterations of the mean structure parameter updates.
- ctolfloat
Convergence criterion, default is one order of magnitude smaller than proposed in section 3.1 of Wang et al.
- ztolfloat
Coefficients smaller than this value are treated as being zero, default is based on section 5 of Wang et al.
- epsnon-negative scalar
Numerical constant, see section 3.2 of Wang et al.
- Returns
- GEEResults instance. Note that not all methods of the results
- class make sense when the model has been fit with regularization.
Notes
This implementation assumes that the link is canonical.
References
Wang L, Zhou J, Qu A. (2012). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics. 2012 Jun;68(2):353-60. doi: 10.1111/j.1541-0420.2011.01678.x. https://www.ncbi.nlm.nih.gov/pubmed/21955051 http://users.stat.umn.edu/~wangx346/research/GEE_selection.pdf