statsmodels.genmod.generalized_estimating_equations.GEEResults¶
-
class
statsmodels.genmod.generalized_estimating_equations.
GEEResults
(model, params, cov_params, scale, cov_type='robust', use_t=False, regularized=False, **kwds)[source]¶ This class summarizes the fit of a marginal regression model using GEE.
- Attributes
- cov_params_defaultndarray
default covariance of the parameter estimates. Is chosen among one of the following three based on cov_type
- cov_robustndarray
covariance of the parameter estimates that is robust
- cov_naivendarray
covariance of the parameter estimates that is not robust to correlation or variance misspecification
- cov_robust_bcndarray
covariance of the parameter estimates that is robust and bias reduced
- convergedbool
indicator for convergence of the optimization. True if the norm of the score is smaller than a threshold
- cov_typestring
string indicating whether a “robust”, “naive” or “bias_reduced” covariance is used as default
- fit_historydict
Contains information about the iterations.
fittedvalues
arrayReturns the fitted values from the model.
- modelclass instance
Pointer to GEE model instance that called fit.
normalized_cov_params
arraySee specific model class docstring
- paramsarray
The coefficients of the fitted model. Note that interpretation of the coefficients often depends on the distribution family and the data.
- scalefloat
The estimate of the scale / dispersion for the model fit. See GEE.fit for more information.
- score_normfloat
norm of the score at the end of the iterative estimation.
bse
arrayThe standard errors of the parameter estimates.
Methods
bse
()The standard errors of the parameter estimates.
Returns the residuals centered within each group.
conf_int
([alpha, cols, cov_type])Returns confidence intervals for the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
Returns the fitted values from the model.
get_margeff
([at, method, atexog, dummy, count])Get marginal effects of the fitted model.
initialize
(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf
()Log-likelihood of model
load
(fname)load a pickle, (class method)
See specific model class docstring
params_sensitivity
(dep_params_first, …)Refits the GEE model using a sequence of values for the dependence parameters.
plot_added_variable
(focus_exog[, …])Create an added variable plot for a fitted regression model.
plot_ceres_residuals
(focus_exog[, frac, …])Produces a CERES (Conditional Expectation Partial Residuals) plot for a fitted regression model.
plot_isotropic_dependence
([ax, xpoints, min_n])Create a plot of the pairwise products of within-group residuals against the corresponding time differences.
plot_partial_residuals
(focus_exog[, ax])Create a partial residual, or ‘component plus residual’ plot for a fited regression model.
predict
([exog, transform])Call self.model.predict with self.params as the first argument.
pvalues
()The two-tailed p values for the t-stats of the params.
qic
([scale])Returns the QIC and QICu information criteria.
remove data arrays, all nobs arrays from result and model
resid
()Returns the residuals, the endogeneous data minus the fitted values from the model.
Returns the residuals centered within each group.
Returns the residuals centered within each group.
Returns the residuals, the endogeneous data minus the fitted values from the model.
save
(fname[, remove_data])save a pickle of this instance
Return the results of a score test for a linear constraint.
sensitivity_params
(dep_params_first, …)Refits the GEE model using a sequence of values for the dependence parameters.
Returns the residuals centered within each group.
Returns the residuals, the endogeneous data minus the fitted values from the model.
standard_errors
([cov_type])This is a convenience function that returns the standard errors for any covariance type.
summary
([yname, xname, title, alpha])Summarize the GEE regression results
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues
()Return the t-statistic for a given parameter estimate.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
resid_anscombe
resid_deviance
resid_pearson
resid_response
resid_working