statsmodels.graphics.tsaplots.plot_acf¶
-
statsmodels.graphics.tsaplots.
plot_acf
(x, ax=None, lags=None, alpha=0.05, use_vlines=True, unbiased=False, fft=False, title='Autocorrelation', zero=True, vlines_kwargs=None, **kwargs)[source]¶ Plot the autocorrelation function
Plots lags on the horizontal and the correlations on vertical axis.
- Parameters
- xarray_like
Array of time-series values
- axMatplotlib AxesSubplot instance, optional
If given, this subplot is used to plot in instead of a new figure being created.
- lagsint or array_like, optional
int or Array of lag values, used on horizontal axis. Uses np.arange(lags) when lags is an int. If not provided,
lags=np.arange(len(corr))
is used.- alphascalar, optional
If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett’s formula. If None, no confidence intervals are plotted.
- use_vlinesbool, optional
If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is ‘o’; it can be overridden with a
marker
kwarg.- unbiasedbool
If True, then denominators for autocovariance are n-k, otherwise n
- fftbool, optional
If True, computes the ACF via FFT.
- titlestr, optional
Title to place on plot. Default is ‘Autocorrelation’
- zerobool, optional
Flag indicating whether to include the 0-lag autocorrelation. Default is True.
- vlines_kwargsdict, optional
Optional dictionary of keyword arguments that are passed to vlines.
- **kwargskwargs, optional
Optional keyword arguments that are directly passed on to the Matplotlib
plot
andaxhline
functions.
- Returns
- figMatplotlib figure instance
If ax is None, the created figure. Otherwise the figure to which ax is connected.
See also
matplotlib.pyplot.xcorr
,matplotlib.pyplot.acorr
Notes
Adapted from matplotlib’s xcorr.
Data are plotted as
plot(lags, corr, **kwargs)
kwargs is used to pass matplotlib optional arguments to both the line tracing the autocorrelations and for the horizontal line at 0. These options must be valid for a Line2D object.
vlines_kwargs is used to pass additional optional arguments to the vertical lines connecting each autocorrelation to the axis. These options must be valid for a LineCollection object.
Examples
>>> import pandas as pd >>> import matplotlib.pyplot as plt >>> import statsmodels.api as sm
>>> dta = sm.datasets.sunspots.load_pandas().data >>> dta.index = pd.Index(sm.tsa.datetools.dates_from_range('1700', '2008')) >>> del dta["YEAR"] >>> sm.graphics.tsa.plot_acf(dta.values.squeeze(), lags=40) >>> plt.show()
(Source code, png, hires.png, pdf)