statsmodels.multivariate.factor.FactorResults

class statsmodels.multivariate.factor.FactorResults(factor)[source]

Factor results class

For result summary, scree/loading plots and factor rotations

Parameters
factorFactor

Fitted Factor class

Notes

Under ML estimation, the default rotation (used for loadings) is condition IC3 of Bai and Li (2012). Under this rotation, the factor scores are iid and standardized. If G is the canonical loadings and U is the vector of uniquenesses, then the covariance matrix implied by the factor analysis is GG’ + diag(U).

Status: experimental, Some refactoring will be necessary when new

features are added.

Attributes
uniqueness: ndarray

The uniqueness (variance of uncorrelated errors unique to each variable)

communality: ndarray

1 - uniqueness

loadingsndarray

Each column is the loading vector for one factor

loadings_no_rotndarray

Unrotated loadings, not available under maximum likelihood analyis.

eigenvaluesndarray

The eigenvalues for a factor analysis obtained using principal components; not available under ML estimation.

n_compint

Number of components (factors)

nbsint

Number of observations

fa_methodstring

The method used to obtain the decomposition, either ‘pa’ for ‘principal axes’ or ‘ml’ for maximum likelihood.

dfint

Degrees of freedom of the factor model.

Methods

factor_score_params([method])

Compute factor scoring coefficient matrix

factor_scoring([endog, method, transform])

factor scoring: compute factors for endog

fitted_cov()

Returns the fitted covariance matrix.

get_loadings_frame([style, sort_, …])

get loadings matrix as DataFrame or pandas Styler

load_stderr()

The standard errors of the loadings.

plot_loadings([loading_pairs, plot_prerotated])

Plot factor loadings in 2-d plots

plot_scree([ncomp])

Plot of the ordered eigenvalues and variance explained for the loadings

rotate(method)

Apply rotation, inplace modification of this Results instance

summary()

Summary

uniq_stderr([kurt])

The standard errors of the uniquenesses.