statsmodels.nonparametric.kernel_regression.KernelCensoredReg

class statsmodels.nonparametric.kernel_regression.KernelCensoredReg(endog, exog, var_type, reg_type, bw='cv_ls', censor_val=0, defaults=None)[source]

Nonparametric censored regression.

Calculates the condtional mean E[y|X] where y = g(X) + e, where y is left-censored. Left censored variable Y is defined as Y = min {Y', L} where L is the value at which Y is censored and Y' is the true value of the variable.

Parameters
endog: list with one element which is array_like

This is the dependent variable.

exog: list

The training data for the independent variable(s) Each element in the list is a separate variable

dep_type: str

The type of the dependent variable(s) c: Continuous u: Unordered (Discrete) o: Ordered (Discrete)

reg_type: str

Type of regression estimator lc: Local Constant Estimator ll: Local Linear Estimator

bw: array_like

Either a user-specified bandwidth or the method for bandwidth selection. cv_ls: cross-validaton least squares aic: AIC Hurvich Estimator

censor_val: float

Value at which the dependent variable is censored

defaults: EstimatorSettings instance, optional

The default values for the efficient bandwidth estimation

Attributes
bw: array_like

The bandwidth parameters

Methods

aic_hurvich(bw[, func])

Computes the AIC Hurvich criteria for the estimation of the bandwidth.

cv_loo(bw, func)

The cross-validation function with leave-one-out estimator

fit([data_predict])

Returns the marginal effects at the data_predict points.

r_squared()

Returns the R-Squared for the nonparametric regression.

sig_test(var_pos[, nboot, nested_res, pivot])

Significance test for the variables in the regression.

censored

loo_likelihood