statsmodels.regression.quantile_regression.QuantReg.fit¶
method
-
QuantReg.
fit
(q=0.5, vcov='robust', kernel='epa', bandwidth='hsheather', max_iter=1000, p_tol=1e-06, **kwargs)[source]¶ Solve by Iterative Weighted Least Squares
- Parameters
- qfloat
Quantile must be between 0 and 1
- vcovstring, method used to calculate the variance-covariance matrix
of the parameters. Default is
robust
:robust : heteroskedasticity robust standard errors (as suggested in Greene 6th edition)
iid : iid errors (as in Stata 12)
- kernelstring, kernel to use in the kernel density estimation for the
asymptotic covariance matrix:
epa: Epanechnikov
cos: Cosine
gau: Gaussian
par: Parzene
- bandwidth: string, Bandwidth selection method in kernel density
estimation for asymptotic covariance estimate (full references in QuantReg docstring):
hsheather: Hall-Sheather (1988)
bofinger: Bofinger (1975)
chamberlain: Chamberlain (1994)