statsmodels.robust.robust_linear_model.RLMResults¶
-
class
statsmodels.robust.robust_linear_model.
RLMResults
(model, params, normalized_cov_params, scale)[source]¶ Class to contain RLM results
- Attributes
- bcov_scaledarray
p x p scaled covariance matrix specified in the model fit method. The default is H1. H1 is defined as
k**2 * (1/df_resid*sum(M.psi(sresid)**2)*scale**2)/ ((1/nobs*sum(M.psi_deriv(sresid)))**2) * (X.T X)^(-1)
where
k = 1 + (df_model +1)/nobs * var_psiprime/m**2
wherem = mean(M.psi_deriv(sresid))
andvar_psiprime = var(M.psi_deriv(sresid))
H2 is defined as
k * (1/df_resid) * sum(M.psi(sresid)**2) *scale**2/ ((1/nobs)*sum(M.psi_deriv(sresid)))*W_inv
H3 is defined as
1/k * (1/df_resid * sum(M.psi(sresid)**2)*scale**2 * (W_inv X.T X W_inv))
where k is defined as above and
W_inv = (M.psi_deriv(sresid) exog.T exog)^(-1)
See the technical documentation for cleaner formulae.
- bcov_unscaledarray
The usual p x p covariance matrix with scale set equal to 1. It is then just equivalent to normalized_cov_params.
bse
arrayThe standard errors of the parameter estimates.
- chisqarray
An array of the chi-squared values of the paramter estimates.
- df_model
See RLM.df_model
- df_resid
See RLM.df_resid
- fit_historydict
Contains information about the iterations. Its keys are deviance, params, iteration and the convergence criteria specified in RLM.fit, if different from deviance or params.
- fit_optionsdict
Contains the options given to fit.
- fittedvaluesarray
The linear predicted values. dot(exog, params)
- modelstatsmodels.rlm.RLM
A reference to the model instance
- nobsfloat
The number of observations n
normalized_cov_params
arraySee specific model class docstring
- paramsarray
The coefficients of the fitted model
- pinv_wexogarray
See RLM.pinv_wexog
pvalues
arrayThe two-tailed p values for the t-stats of the params.
- residarray
The residuals of the fitted model. endog - fittedvalues
- scalefloat
The type of scale is determined in the arguments to the fit method in RLM. The reported scale is taken from the residuals of the weighted least squares in the last IRLS iteration if update_scale is True. If update_scale is False, then it is the scale given by the first OLS fit before the IRLS iterations.
- sresidarray
The scaled residuals.
tvalues
arrayReturn the t-statistic for a given parameter estimate.
- weightsarray
The reported weights are determined by passing the scaled residuals from the last weighted least squares fit in the IRLS algortihm.
Methods
bse
()The standard errors of the parameter estimates.
conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
initialize
(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf
()Log-likelihood of model
load
(fname)load a pickle, (class method)
See specific model class docstring
predict
([exog, transform])Call self.model.predict with self.params as the first argument.
pvalues
()The two-tailed p values for the t-stats of the params.
remove data arrays, all nobs arrays from result and model
save
(fname[, remove_data])save a pickle of this instance
summary
([yname, xname, title, alpha, return_fmt])This is for testing the new summary setup
summary2
([xname, yname, title, alpha, …])Experimental summary function for regression results
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues
()Return the t-statistic for a given parameter estimate.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
bcov_scaled
bcov_unscaled
chisq
fittedvalues
resid
sresid
weights