statsmodels.tsa.ar_model.AR.loglike¶
method
-
AR.
loglike
(params)[source]¶ The loglikelihood of an AR(p) process
- Parameters
- paramsarray
The fitted parameters of the AR model
- Returns
- llffloat
The loglikelihood evaluated at params
Notes
Contains constant term. If the model is fit by OLS then this returns the conditonal maximum likelihood.
\[\frac{\left(n-p\right)}{2}\left(\log\left(2\pi\right)+\log\left(\sigma^{2}\right)\right)-\frac{1}{\sigma^{2}}\sum_{i}\epsilon_{i}^{2}\]If it is fit by MLE then the (exact) unconditional maximum likelihood is returned.
\[-\frac{n}{2}log\left(2\pi\right)-\frac{n}{2}\log\left(\sigma^{2}\right)+\frac{1}{2}\left|V_{p}^{-1}\right|-\frac{1}{2\sigma^{2}}\left(y_{p}-\mu_{p}\right)^{\prime}V_{p}^{-1}\left(y_{p}-\mu_{p}\right)-\frac{1}{2\sigma^{2}}\sum_{t=p+1}^{n}\epsilon_{i}^{2}\]where
\(\mu_{p}\) is a (p x 1) vector with each element equal to the mean of the AR process and \(\sigma^{2}V_{p}\) is the (p x p) variance-covariance matrix of the first p observations.