statsmodels.tsa.ar_model.ARResults¶
-
class
statsmodels.tsa.ar_model.
ARResults
(model, params, normalized_cov_params=None, scale=1.0)[source]¶ Class to hold results from fitting an AR model.
- Parameters
- modelAR Model instance
Reference to the model that is fit.
- paramsarray
The fitted parameters from the AR Model.
- normalized_cov_paramsarray
inv(dot(X.T,X)) where X is the lagged values.
- scalefloat, optional
An estimate of the scale of the model.
- Attributes
- aicfloat
Akaike Information Criterion using Lutkephol’s definition. \(log(sigma) + 2*(1 + k_ar + k_trend)/nobs\)
- bicfloat
Bayes Information Criterion \(\log(\sigma) + (1 + k_ar + k_trend)*\log(nobs)/nobs\)
bse
arrayThe standard errors of the parameter estimates.
- fittedvaluesarray
The in-sample predicted values of the fitted AR model. The k_ar initial values are computed via the Kalman Filter if the model is fit by mle.
- fpefloat
Final prediction error using Lütkepohl’s definition ((n_totobs+k_trend)/(n_totobs-k_ar-k_trend))*sigma
- hqicfloat
Hannan-Quinn Information Criterion.
- k_arfloat
Lag length. Sometimes used as p in the docs.
- k_trendfloat
The number of trend terms included. ‘nc’=0, ‘c’=1.
llf
floatLog-likelihood of model
- modelAR model instance
A reference to the fitted AR model.
- nobsfloat
The number of available observations nobs - k_ar
- n_totobsfloat
The number of total observations in endog. Sometimes n in the docs.
- paramsarray
The fitted parameters of the model.
pvalues
arrayThe two-tailed p values for the t-stats of the params.
- residarray
The residuals of the model. If the model is fit by ‘mle’ then the pre-sample residuals are calculated using fittedvalues from the Kalman Filter.
- rootsarray
The roots of the AR process are the solution to (1 - arparams[0]*z - arparams[1]*z**2 -…- arparams[p-1]*z**k_ar) = 0 Stability requires that the roots in modulus lie outside the unit circle.
- scalefloat
Same as sigma2
- sigma2float
The variance of the innovations (residuals).
- trendorderint
The polynomial order of the trend. ‘nc’ = None, ‘c’ or ‘t’ = 0, ‘ct’ = 1, etc.
tvalues
arrayReturn the t-statistic for a given parameter estimate.
Methods
bse
()The standard errors of the parameter estimates.
conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Returns the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
initialize
(model, params, **kwd)Initialize (possibly re-initialize) a Results instance.
llf
()Log-likelihood of model
load
(fname)load a pickle, (class method)
See specific model class docstring
predict
([start, end, dynamic])Returns in-sample and out-of-sample prediction.
pvalues
()The two-tailed p values for the t-stats of the params.
remove data arrays, all nobs arrays from result and model
save
(fname[, remove_data])save a pickle of this instance
summary
()Summary
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise
(term_name[, method, alpha, …])perform pairwise t_test with multiple testing corrected p-values
tvalues
()Return the t-statistic for a given parameter estimate.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns
aic
bic
fittedvalues
fpe
hqic
resid
roots
scale
sigma2