statsmodels.tsa.statespace.kalman_smoother.KalmanSmoother¶
-
class
statsmodels.tsa.statespace.kalman_smoother.
KalmanSmoother
(k_endog, k_states, k_posdef=None, results_class=None, kalman_smoother_classes=None, **kwargs)[source]¶ State space representation of a time series process, with Kalman filter and smoother.
- Parameters
- k_endogarray_like or integer
The observed time-series process \(y\) if array like or the number of variables in the process if an integer.
- k_statesint
The dimension of the unobserved state process.
- k_posdefint, optional
The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation. Must be less than or equal to k_states. Default is k_states.
- results_classclass, optional
Default results class to use to save filtering output. Default is SmootherResults. If specified, class must extend from SmootherResults.
- **kwargs
Keyword arguments may be used to provide default values for state space matrices, for Kalman filtering options, or for Kalman smoothing options. See Representation for more details.
- Attributes
- design
dtype
(dtype) Datatype of currently active representation matrices
- endog
obs
(array) Observation vector: \(y~(k\_endog \times nobs)\)
- obs_cov
- obs_intercept
prefix
(str) BLAS prefix of currently active representation matrices
- selection
- state_cov
- state_intercept
time_invariant
(bool) Whether or not currently active representation matrices are
- transition
Methods
bind
(endog)Bind data to the statespace representation
filter
([filter_method, inversion_method, …])Apply the Kalman filter to the statespace model.
fixed_scale
(scale)Context manager for fixing the scale when FILTER_CONCENTRATED is set
impulse_responses
([steps, impulse, …])Impulse response function
initialize
(initialization[, …])Create an Initialization object if necessary
initialize_approximate_diffuse
([variance])Initialize the statespace model with approximate diffuse values.
Initialize the statespace model as stationary.
initialize_known
(constant, stationary_cov)Initialize the statespace model with known distribution for initial state.
Initialize the statespace model as stationary.
loglike
(**kwargs)Calculate the loglikelihood associated with the statespace model.
loglikeobs
(**kwargs)Calculate the loglikelihood for each observation associated with the statespace model.
set_conserve_memory
([conserve_memory])Set the memory conservation method
set_filter_method
([filter_method])Set the filtering method
set_filter_timing
([alternate_timing])Set the filter timing convention
set_inversion_method
([inversion_method])Set the inversion method
set_smooth_method
([smooth_method])Set the smoothing method
set_smoother_output
([smoother_output])Set the smoother output
set_stability_method
([stability_method])Set the numerical stability method
simulate
(nsimulations[, measurement_shocks, …])Simulate a new time series following the state space model
smooth
([smoother_output, smooth_method, …])Apply the Kalman smoother to the statespace model.