statsmodels.tsa.statespace.representation.Representation¶
-
class
statsmodels.tsa.statespace.representation.
Representation
(k_endog, k_states, k_posdef=None, initial_variance=1000000.0, nobs=0, dtype=<class 'numpy.float64'>, design=None, obs_intercept=None, obs_cov=None, transition=None, state_intercept=None, selection=None, state_cov=None, statespace_classes=None, **kwargs)[source]¶ State space representation of a time series process
- Parameters
- k_endogarray_like or integer
The observed time-series process \(y\) if array like or the number of variables in the process if an integer.
- k_statesint
The dimension of the unobserved state process.
- k_posdefint, optional
The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation. Must be less than or equal to k_states. Default is k_states.
- initial_variancefloat, optional
Initial variance used when approximate diffuse initialization is specified. Default is 1e6.
- initializationInitialization object or string, optional
Initialization method for the initial state. If a string, must be one of {‘diffuse’, ‘approximate_diffuse’, ‘stationary’, ‘known’}.
- initial_statearray_like, optional
If initialization=’known’ is used, the mean of the initial state’s distribution.
- initial_state_covarray_like, optional
If initialization=’known’ is used, the covariance matrix of the initial state’s distribution.
- nobsinteger, optional
If an endogenous vector is not given (i.e. k_endog is an integer), the number of observations can optionally be specified. If not specified, they will be set to zero until data is bound to the model.
- dtypenp.dtype, optional
If an endogenous vector is not given (i.e. k_endog is an integer), the default datatype of the state space matrices can optionally be specified. Default is np.float64.
- designarray_like, optional
The design matrix, \(Z\). Default is set to zeros.
- obs_interceptarray_like, optional
The intercept for the observation equation, \(d\). Default is set to zeros.
- obs_covarray_like, optional
The covariance matrix for the observation equation \(H\). Default is set to zeros.
- transitionarray_like, optional
The transition matrix, \(T\). Default is set to zeros.
- state_interceptarray_like, optional
The intercept for the transition equation, \(c\). Default is set to zeros.
- selectionarray_like, optional
The selection matrix, \(R\). Default is set to zeros.
- state_covarray_like, optional
The covariance matrix for the state equation \(Q\). Default is set to zeros.
- **kwargs
Additional keyword arguments. Not used directly. It is present to improve compatibility with subclasses, so that they can use **kwargs to specify any default state space matrices (e.g. design) without having to clean out any other keyword arguments they might have been passed.
Notes
A general state space model is of the form
\[\begin{split}y_t & = Z_t \alpha_t + d_t + \varepsilon_t \\ \alpha_t & = T_t \alpha_{t-1} + c_t + R_t \eta_t \\\end{split}\]where \(y_t\) refers to the observation vector at time \(t\), \(\alpha_t\) refers to the (unobserved) state vector at time \(t\), and where the irregular components are defined as
\[\begin{split}\varepsilon_t \sim N(0, H_t) \\ \eta_t \sim N(0, Q_t) \\\end{split}\]The remaining variables (\(Z_t, d_t, H_t, T_t, c_t, R_t, Q_t\)) in the equations are matrices describing the process. Their variable names and dimensions are as follows
Z : design \((k\_endog \times k\_states \times nobs)\)
d : obs_intercept \((k\_endog \times nobs)\)
H : obs_cov \((k\_endog \times k\_endog \times nobs)\)
T : transition \((k\_states \times k\_states \times nobs)\)
c : state_intercept \((k\_states \times nobs)\)
R : selection \((k\_states \times k\_posdef \times nobs)\)
Q : state_cov \((k\_posdef \times k\_posdef \times nobs)\)
In the case that one of the matrices is time-invariant (so that, for example, \(Z_t = Z_{t+1} ~ \forall ~ t\)), its last dimension may be of size \(1\) rather than size nobs.
References
- *
Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by State Space Methods: Second Edition. Oxford University Press.
- Attributes
- nobsint
The number of observations.
- k_endogint
The dimension of the observation series.
- k_statesint
The dimension of the unobserved state process.
- k_posdefint
The dimension of a guaranteed positive definite covariance matrix describing the shocks in the measurement equation.
- shapesdictionary of name:tuple
A dictionary recording the initial shapes of each of the representation matrices as tuples.
- initializationstr
Kalman filter initialization method. Default is unset.
- initial_variancefloat
Initial variance for approximate diffuse initialization. Default is 1e6.
Methods
bind
(endog)Bind data to the statespace representation
initialize
(initialization[, …])Create an Initialization object if necessary
initialize_approximate_diffuse
([variance])Initialize the statespace model with approximate diffuse values.
Initialize the statespace model as stationary.
initialize_known
(constant, stationary_cov)Initialize the statespace model with known distribution for initial state.
Initialize the statespace model as stationary.