statsmodels.tsa.vector_ar.vecm.VECMResults¶
-
class
statsmodels.tsa.vector_ar.vecm.
VECMResults
(endog, exog, exog_coint, k_ar, coint_rank, alpha, beta, gamma, sigma_u, deterministic='nc', seasons=0, first_season=0, delta_y_1_T=None, y_lag1=None, delta_x=None, model=None, names=None, dates=None)[source]¶ Class for holding estimation related results of a vector error correction model (VECM).
- Parameters
- endogndarray (neqs x nobs_tot)
Array of observations.
- exogndarray (nobs_tot x neqs) or None
Deterministic terms outside the cointegration relation.
- exog_cointndarray (nobs_tot x neqs) or None
Deterministic terms inside the cointegration relation.
- k_arint, >= 1
Lags in the VAR representation. This implies that the number of lags in the VEC representation (=lagged differences) equals \(k_{ar} - 1\).
- coint_rankint, 0 <= coint_rank <= neqs
Cointegration rank, equals the rank of the matrix \(\Pi\) and the number of columns of \(\alpha\) and \(\beta\).
- alphandarray (neqs x coint_rank)
Estimate for the parameter \(\alpha\) of a VECM.
- betandarray (neqs x coint_rank)
Estimate for the parameter \(\beta\) of a VECM.
- gammandarray (neqs x neqs*(k_ar-1))
Array containing the estimates of the \(k_{ar}-1\) parameter matrices \(\Gamma_1, \dots, \Gamma_{k_{ar}-1}\) of a VECM(\(k_{ar}-1\)). The submatrices are stacked horizontally from left to right.
- sigma_undarray (neqs x neqs)
Estimate of white noise process covariance matrix \(\Sigma_u\).
- deterministicstr {
"nc"
,"co"
,"ci"
,"lo"
,"li"
} "nc"
- no deterministic terms"co"
- constant outside the cointegration relation"ci"
- constant within the cointegration relation"lo"
- linear trend outside the cointegration relation"li"
- linear trend within the cointegration relation
Combinations of these are possible (e.g.
"cili"
or"colo"
for linear trend with intercept). See the docstring of theVECM
-class for more information.- seasonsint, default: 0
Number of periods in a seasonal cycle. 0 means no seasons.
- first_seasonint, default: 0
Season of the first observation.
- delta_y_1_Tndarray or None, default: None
Auxilliary array for internal computations. It will be calculated if not given as parameter.
- y_lag1ndarray or None, default: None
Auxilliary array for internal computations. It will be calculated if not given as parameter.
- delta_xndarray or None, default: None
Auxilliary array for internal computations. It will be calculated if not given as parameter.
- model
VECM
An instance of the
VECM
-class.- nameslist of str
Each str in the list represents the name of a variable of the time series.
- datesarray-like
For example a DatetimeIndex of length nobs_tot.
References
- Attributes
- nobsint
Number of observations (excluding the presample).
- modelsee Parameters
- y_allsee endog in Parameters
- exogsee Parameters
- exog_cointsee Parameters
- namessee Parameters
- datessee Parameters
- neqsint
Number of variables in the time series.
- k_arsee Parameters
- deterministicsee Parameters
- seasonssee Parameters
- first_seasonsee Parameters
- alphasee Parameters
- betasee Parameters
- gammasee Parameters
- sigma_usee Parameters
- det_coef_cointndarray (#(determinist. terms inside the coint. rel.) x coint_rank)
Estimated coefficients for the all deterministic terms inside the cointegration relation.
- const_cointndarray (1 x coint_rank)
If there is a constant deterministic term inside the cointegration relation, then const_coint is the first row of det_coef_coint. Otherwise it’s an ndarray of zeros.
- lin_trend_cointndarray (1 x coint_rank)
If there is a linear deterministic term inside the cointegration relation, then lin_trend_coint contains the corresponding estimated coefficients. As such it represents the corresponding row of det_coef_coint. If there is no linear deterministic term inside the cointegration relation, then lin_trend_coint is an ndarray of zeros.
- exog_coint_coefsndarray (exog_coint.shape[1] x coint_rank) or None
If deterministic terms inside the cointegration relation are passed via the exog_coint parameter, then exog_coint_coefs contains the corresponding estimated coefficients. As such exog_coint_coefs represents the last rows of det_coef_coint. If no deterministic terms were passed via the exog_coint parameter, this attribute is None.
- det_coefndarray (neqs x #(deterministic terms outside the coint. rel.))
Estimated coefficients for the all deterministic terms outside the cointegration relation.
- constndarray (neqs x 1) or (neqs x 0)
If a constant deterministic term outside the cointegration is specified within the deterministic parameter, then const is the first column of det_coef_coint. Otherwise it’s an ndarray of size zero.
- seasonalndarray (neqs x seasons)
If the seasons parameter is > 0, then seasonal contains the estimated coefficients corresponding to the seasonal terms. Otherwise it’s an ndarray of size zero.
- lin_trendndarray (neqs x 1) or (neqs x 0)
If a linear deterministic term outside the cointegration is specified within the deterministic parameter, then lin_trend contains the corresponding estimated coefficients. As such it represents the corresponding column of det_coef_coint. If there is no linear deterministic term outside the cointegration relation, then lin_trend is an ndarray of size zero.
- exog_coefsndarray (neqs x exog_coefs.shape[1])
If deterministic terms outside the cointegration relation are passed via the exog parameter, then exog_coefs contains the corresponding estimated coefficients. As such exog_coefs represents the last columns of det_coef. If no deterministic terms were passed via the exog parameter, this attribute is an ndarray of size zero.
- _delta_y_1_Tsee delta_y_1_T in Parameters
- _y_lag1see y_lag1 in Parameters
- _delta_xsee delta_x in Parameters
- coint_rankint
Cointegration rank, equals the rank of the matrix \(\Pi\) and the number of columns of \(\alpha\) and \(\beta\).
llf
floatCompute the VECM’s loglikelihood.
- cov_paramsndarray (d x d)
Covariance matrix of the parameters. The number of rows and columns, d (used in the dimension specification of this argument), is equal to neqs * (neqs+num_det_coef_coint + neqs*(k_ar-1)+number of deterministic dummy variables outside the cointegration relation). For the case with no deterministic terms this matrix is defined on p. 287 in [1] as \(\Sigma_{co}\) and its relationship to the ML-estimators can be seen in eq. (7.2.21) on p. 296 in [1].
- cov_params_wo_detndarray
Covariance matrix of the parameters \(\tilde{\Pi}, \tilde{\Gamma}\) where \(\tilde{\Pi} = \tilde{\alpha} \tilde{\beta'}\). Equals cov_params without the rows and columns related to deterministic terms. This matrix is defined as \(\Sigma_{co}\) on p. 287 in [1].
stderr_params
ndarray (d)# standard errors:
stderr_coint
ndarray (neqs+num_det_coef_coint x coint_rank)Standard errors of beta and deterministic terms inside the cointegration relation.
- stderr_alphandarray (neqs x coint_rank)
The standard errors of \(\alpha\).
- stderr_betandarray (neqs x coint_rank)
The standard errors of \(\beta\).
- stderr_det_coef_cointndarray (num_det_coef_coint x coint_rank)
The standard errors of estimated the parameters related to deterministic terms inside the cointegration relation.
- stderr_gammandarray (neqs x neqs*(k_ar-1))
The standard errors of \(\Gamma_1, \ldots, \Gamma_{k_{ar}-1}\).
- stderr_det_coefndarray (neqs x det. terms outside the coint. relation)
The standard errors of estimated the parameters related to deterministic terms outside the cointegration relation.
tvalues_alpha
ndarray (neqs x coint_rank)# t-values:
- tvalues_betandarray (neqs x coint_rank)
- tvalues_det_coef_cointndarray (num_det_coef_coint x coint_rank)
- tvalues_gammandarray (neqs x neqs*(k_ar-1))
- tvalues_det_coefndarray (neqs x det. terms outside the coint. relation)
pvalues_alpha
ndarray (neqs x coint_rank)# p-values:
- pvalues_betandarray (neqs x coint_rank)
- pvalues_det_coef_cointndarray (num_det_coef_coint x coint_rank)
- pvalues_gammandarray (neqs x neqs*(k_ar-1))
- pvalues_det_coefndarray (neqs x det. terms outside the coint. relation)
- var_rep(k_ar x neqs x neqs)
KxK parameter matrices \(A_i\) of the corresponding VAR representation. If the return value is assigned to a variable
A
, these matrices can be accessed viaA[i]
for \(i=0, \ldots, k_{ar}-1\).cov_var_repr
ndarray (neqs**2 * k_ar x neqs**2 * k_ar)Gives the covariance matrix of the corresponding VAR-representation.
fittedvalues
ndarray (nobs x neqs)Return the in-sample values of endog calculated by the model.
resid
ndarray (nobs x neqs)Return the difference between observed and fitted values.
Methods
Gives the covariance matrix of the corresponding VAR-representation.
Return the in-sample values of endog calculated by the model.
llf
()Compute the VECM’s loglikelihood.
orth_ma_rep
([maxn, P])Compute orthogonalized MA coefficient matrices.
plot_data
([with_presample])Plot the input time series.
plot_forecast
(steps[, alpha, plot_conf_int, …])Plot the forecast.
predict
([steps, alpha, exog_fc, exog_coint_fc])Calculate future values of the time series.
resid
()Return the difference between observed and fitted values.
Standard errors of beta and deterministic terms inside the cointegration relation.
summary
([alpha])Return a summary of the estimation results.
test_granger_causality
(caused[, causing, signif])Test for Granger-causality.
test_inst_causality
(causing[, signif])Test for instantaneous causality.
test_normality
([signif])Test assumption of normal-distributed errors using Jarque-Bera-style omnibus \(\\chi^2\) test.
test_whiteness
([nlags, signif, adjusted])Test the whiteness of the residuals using the Portmanteau test.
conf_int_alpha
conf_int_beta
conf_int_det_coef
conf_int_det_coef_coint
conf_int_gamma
cov_params_default
cov_params_wo_det
irf
ma_rep
pvalues_beta
pvalues_det_coef
pvalues_det_coef_coint
pvalues_gamma
stderr_alpha
stderr_beta
stderr_det_coef
stderr_det_coef_coint
stderr_gamma
tvalues_beta
tvalues_det_coef
tvalues_det_coef_coint
tvalues_gamma
var_rep