Source code for statsmodels.stats._adnorm

# -*- coding: utf-8 -*-
"""
Created on Sun Sep 25 21:23:38 2011

Author: Josef Perktold and Scipy developers
License : BSD-3
"""
import numpy as np
from scipy import stats

from statsmodels.tools.validation import array_like, bool_like, int_like


[docs]def anderson_statistic(x, dist='norm', fit=True, params=(), axis=0): """ Calculate the Anderson-Darling a2 statistic. Parameters ---------- x : array_like The data to test. dist : {'norm', callable} The assumed distribution under the null of test statistic. fit : bool If True, then the distribution parameters are estimated. Currently only for 1d data x, except in case dist='norm'. params : tuple The optional distribution parameters if fit is False. axis : int If dist is 'norm' or fit is False, then data can be an n-dimensional and axis specifies the axis of a variable. Returns ------- {float, ndarray} The Anderson-Darling statistic. """ x = array_like(x, 'x', ndim=None) fit = bool_like(fit, 'fit') axis = int_like(axis, 'axis') y = np.sort(x, axis=axis) nobs = y.shape[axis] if fit: if dist == 'norm': xbar = np.expand_dims(np.mean(x, axis=axis), axis) s = np.expand_dims(np.std(x, ddof=1, axis=axis), axis) w = (y - xbar) / s z = stats.norm.cdf(w) # print z elif callable(dist): params = dist.fit(x) # print params z = dist.cdf(y, *params) print(z) else: raise ValueError("dist must be 'norm' or a Callable") else: if callable(dist): z = dist.cdf(y, *params) else: raise ValueError('if fit is false, then dist must be callable') i = np.arange(1, nobs + 1) sl1 = [None] * x.ndim sl1[axis] = slice(None) sl1 = tuple(sl1) sl2 = [slice(None)] * x.ndim sl2[axis] = slice(None, None, -1) sl2 = tuple(sl2) s = np.sum((2 * i[sl1] - 1.0) / nobs * (np.log(z) + np.log1p(-z[sl2])), axis=axis) a2 = -nobs - s return a2
[docs]def normal_ad(x, axis=0): """ Anderson-Darling test for normal distribution unknown mean and variance. Parameters ---------- x : array_like The data array. axis : int The axis to perform the test along. Returns ------- ad2 : float Anderson Darling test statistic. pval : float The pvalue for hypothesis that the data comes from a normal distribution with unknown mean and variance. See Also -------- statsmodels.stats.diagnostic.anderson_statistic The Anderson-Darling a2 statistic. statsmodels.stats.diagnostic.kstest_fit Kolmogorov-Smirnov test with estimated parameters for Normal or Exponential distributions. """ ad2 = anderson_statistic(x, dist='norm', fit=True, axis=axis) n = x.shape[axis] ad2a = ad2 * (1 + 0.75 / n + 2.25 / n ** 2) if np.size(ad2a) == 1: if (ad2a >= 0.00 and ad2a < 0.200): pval = 1 - np.exp(-13.436 + 101.14 * ad2a - 223.73 * ad2a ** 2) elif ad2a < 0.340: pval = 1 - np.exp(-8.318 + 42.796 * ad2a - 59.938 * ad2a ** 2) elif ad2a < 0.600: pval = np.exp(0.9177 - 4.279 * ad2a - 1.38 * ad2a ** 2) elif ad2a <= 13: pval = np.exp(1.2937 - 5.709 * ad2a + 0.0186 * ad2a ** 2) else: pval = 0.0 # is < 4.9542108058458799e-31 else: bounds = np.array([0.0, 0.200, 0.340, 0.600]) pval0 = lambda ad2a: np.nan * np.ones_like(ad2a) pval1 = lambda ad2a: 1 - np.exp( -13.436 + 101.14 * ad2a - 223.73 * ad2a ** 2) pval2 = lambda ad2a: 1 - np.exp( -8.318 + 42.796 * ad2a - 59.938 * ad2a ** 2) pval3 = lambda ad2a: np.exp(0.9177 - 4.279 * ad2a - 1.38 * ad2a ** 2) pval4 = lambda ad2a: np.exp(1.2937 - 5.709 * ad2a + 0.0186 * ad2a ** 2) pvalli = [pval0, pval1, pval2, pval3, pval4] idx = np.searchsorted(bounds, ad2a, side='right') pval = np.nan * np.ones_like(ad2a) for i in range(5): mask = (idx == i) pval[mask] = pvalli[i](ad2a[mask]) return ad2, pval
if __name__ == '__main__': x = np.array([-0.1184, -1.3403, 0.0063, -0.612, -0.3869, -0.2313, -2.8485, -0.2167, 0.4153, 1.8492, -0.3706, 0.9726, -0.1501, -0.0337, -1.4423, 1.2489, 0.9182, -0.2331, -0.6182, 0.1830]) r_res = np.array([0.58672353588821502, 0.1115380760041617]) ad2, pval = normal_ad(x) print(ad2, pval) print(r_res - [ad2, pval]) print(anderson_statistic((x - x.mean()) / x.std(), dist=stats.norm, fit=False)) print(anderson_statistic(x, dist=stats.norm, fit=True))