Source code for statsmodels.robust.scale

"""
Support and standalone functions for Robust Linear Models

References
----------
PJ Huber.  'Robust Statistics' John Wiley and Sons, Inc., New York, 1981.

R Venables, B Ripley. 'Modern Applied Statistics in S'
    Springer, New York, 2002.

C Croux, PJ Rousseeuw, 'Time-efficient algorithms for two highly robust
estimators of scale' Computational statistics. Physica, Heidelberg, 1992.
"""
from statsmodels.compat.pandas import Appender

import numpy as np
from scipy.stats import norm as Gaussian

from statsmodels.tools import tools
from statsmodels.tools.validation import array_like, float_like

from . import norms
from ._qn import _qn


[docs]def mad(a, c=Gaussian.ppf(3 / 4.0), axis=0, center=np.median): """ The Median Absolute Deviation along given axis of an array Parameters ---------- a : array_like Input array. c : float, optional The normalization constant. Defined as scipy.stats.norm.ppf(3/4.), which is approximately 0.6745. axis : int, optional The default is 0. Can also be None. center : callable or float If a callable is provided, such as the default `np.median` then it is expected to be called center(a). The axis argument will be applied via np.apply_over_axes. Otherwise, provide a float. Returns ------- mad : float `mad` = median(abs(`a` - center))/`c` """ a = array_like(a, "a", ndim=None) c = float_like(c, "c") if not a.size: center_val = 0.0 elif callable(center): if axis is not None: center_val = np.apply_over_axes(center, a, axis) else: center_val = center(a.ravel()) else: center_val = float_like(center, "center") return np.median((np.abs(a - center_val)) / c, axis=axis)
[docs]def iqr(a, c=Gaussian.ppf(3 / 4) - Gaussian.ppf(1 / 4), axis=0): """ The normalized interquartile range along given axis of an array Parameters ---------- a : array_like Input array. c : float, optional The normalization constant, used to get consistent estimates of the standard deviation at the normal distribution. Defined as scipy.stats.norm.ppf(3/4.) - scipy.stats.norm.ppf(1/4.), which is approximately 1.349. axis : int, optional The default is 0. Can also be None. Returns ------- The normalized interquartile range """ a = array_like(a, "a", ndim=None) c = float_like(c, "c") if a.ndim == 0: raise ValueError("a should have at least one dimension") elif a.size == 0: return np.nan else: quantiles = np.quantile(a, [0.25, 0.75], axis=axis) return np.squeeze(np.diff(quantiles, axis=0) / c)
[docs]def qn_scale(a, c=1 / (np.sqrt(2) * Gaussian.ppf(5 / 8)), axis=0): """ Computes the Qn robust estimator of scale The Qn scale estimator is a more efficient alternative to the MAD. The Qn scale estimator of an array a of length n is defined as c * {abs(a[i] - a[j]): i<j}_(k), for k equal to [n/2] + 1 choose 2. Thus, the Qn estimator is the k-th order statistic of the absolute differences of the array. The optional constant is used to normalize the estimate as explained below. The implementation follows the algorithm described in Croux and Rousseeuw (1992). Parameters ---------- a : array_like Input array. c : float, optional The normalization constant. The default value is used to get consistent estimates of the standard deviation at the normal distribution. axis : int, optional The default is 0. Returns ------- {float, ndarray} The Qn robust estimator of scale """ a = array_like( a, "a", ndim=None, dtype=np.float64, contiguous=True, order="C" ) c = float_like(c, "c") if a.ndim == 0: raise ValueError("a should have at least one dimension") elif a.size == 0: return np.nan else: out = np.apply_along_axis(_qn, axis=axis, arr=a, c=c) if out.ndim == 0: return float(out) return out
@Appender(qn_scale.__doc__) def qn(a, c=1 / (np.sqrt(2) * Gaussian.ppf(5 / 8)), axis=0): import warnings warnings.warn( "qn has changed to qn_scale. qn will be remvoed after 0.13 is " "released.", FutureWarning ) return qn_scale(a, c=c, axis=axis) def _qn_naive(a, c=1 / (np.sqrt(2) * Gaussian.ppf(5 / 8))): """ A naive implementation of the Qn robust estimator of scale, used solely to test the faster, more involved one Parameters ---------- a : array_like Input array. c : float, optional The normalization constant, used to get consistent estimates of the standard deviation at the normal distribution. Defined as 1/(np.sqrt(2) * scipy.stats.norm.ppf(5/8)), which is 2.219144. Returns ------- The Qn robust estimator of scale """ a = np.squeeze(a) n = a.shape[0] if a.size == 0: return np.nan else: h = int(n // 2 + 1) k = int(h * (h - 1) / 2) idx = np.triu_indices(n, k=1) diffs = np.abs(a[idx[0]] - a[idx[1]]) output = np.partition(diffs, kth=k - 1)[k - 1] output = c * output return output
[docs]class Huber(object): """ Huber's proposal 2 for estimating location and scale jointly. Parameters ---------- c : float, optional Threshold used in threshold for chi=psi**2. Default value is 1.5. tol : float, optional Tolerance for convergence. Default value is 1e-08. maxiter : int, optional0 Maximum number of iterations. Default value is 30. norm : statsmodels.robust.norms.RobustNorm, optional A robust norm used in M estimator of location. If None, the location estimator defaults to a one-step fixed point version of the M-estimator using Huber's T. call Return joint estimates of Huber's scale and location. Examples -------- >>> import numpy as np >>> import statsmodels.api as sm >>> chem_data = np.array([2.20, 2.20, 2.4, 2.4, 2.5, 2.7, 2.8, 2.9, 3.03, ... 3.03, 3.10, 3.37, 3.4, 3.4, 3.4, 3.5, 3.6, 3.7, 3.7, 3.7, 3.7, ... 3.77, 5.28, 28.95]) >>> sm.robust.scale.huber(chem_data) (array(3.2054980819923693), array(0.67365260010478967)) """ def __init__(self, c=1.5, tol=1.0e-08, maxiter=30, norm=None): self.c = c self.maxiter = maxiter self.tol = tol self.norm = norm tmp = 2 * Gaussian.cdf(c) - 1 self.gamma = tmp + c ** 2 * (1 - tmp) - 2 * c * Gaussian.pdf(c) def __call__(self, a, mu=None, initscale=None, axis=0): """ Compute Huber's proposal 2 estimate of scale, using an optional initial value of scale and an optional estimate of mu. If mu is supplied, it is not reestimated. Parameters ---------- a : ndarray 1d array mu : float or None, optional If the location mu is supplied then it is not reestimated. Default is None, which means that it is estimated. initscale : float or None, optional A first guess on scale. If initscale is None then the standardized median absolute deviation of a is used. Notes ----- `Huber` minimizes the function sum(psi((a[i]-mu)/scale)**2) as a function of (mu, scale), where psi(x) = np.clip(x, -self.c, self.c) """ a = np.asarray(a) if mu is None: n = a.shape[0] - 1 mu = np.median(a, axis=axis) est_mu = True else: n = a.shape[0] mu = mu est_mu = False if initscale is None: scale = mad(a, axis=axis) else: scale = initscale scale = tools.unsqueeze(scale, axis, a.shape) mu = tools.unsqueeze(mu, axis, a.shape) return self._estimate_both(a, scale, mu, axis, est_mu, n) def _estimate_both(self, a, scale, mu, axis, est_mu, n): """ Estimate scale and location simultaneously with the following pseudo_loop: while not_converged: mu, scale = estimate_location(a, scale, mu), estimate_scale(a, scale, mu) where estimate_location is an M-estimator and estimate_scale implements the check used in Section 5.5 of Venables & Ripley """ # noqa:E501 for _ in range(self.maxiter): # Estimate the mean along a given axis if est_mu: if self.norm is None: # This is a one-step fixed-point estimator # if self.norm == norms.HuberT # It should be faster than using norms.HuberT nmu = ( np.clip( a, mu - self.c * scale, mu + self.c * scale ).sum(axis) / a.shape[axis] ) else: nmu = norms.estimate_location( a, scale, self.norm, axis, mu, self.maxiter, self.tol ) else: # Effectively, do nothing nmu = mu.squeeze() nmu = tools.unsqueeze(nmu, axis, a.shape) subset = np.less_equal(np.abs((a - mu) / scale), self.c) card = subset.sum(axis) scale_num = np.sum(subset * (a - nmu) ** 2, axis) scale_denom = n * self.gamma - (a.shape[axis] - card) * self.c ** 2 nscale = np.sqrt(scale_num / scale_denom) nscale = tools.unsqueeze(nscale, axis, a.shape) test1 = np.alltrue( np.less_equal(np.abs(scale - nscale), nscale * self.tol) ) test2 = np.alltrue( np.less_equal(np.abs(mu - nmu), nscale * self.tol) ) if not (test1 and test2): mu = nmu scale = nscale else: return nmu.squeeze(), nscale.squeeze() raise ValueError( "joint estimation of location and scale failed " "to converge in %d iterations" % self.maxiter )
huber = Huber()
[docs]class HuberScale(object): r""" Huber's scaling for fitting robust linear models. Huber's scale is intended to be used as the scale estimate in the IRLS algorithm and is slightly different than the `Huber` class. Parameters ---------- d : float, optional d is the tuning constant for Huber's scale. Default is 2.5 tol : float, optional The convergence tolerance maxiter : int, optiona The maximum number of iterations. The default is 30. Methods ------- call Return's Huber's scale computed as below Notes -------- Huber's scale is the iterative solution to scale_(i+1)**2 = 1/(n*h)*sum(chi(r/sigma_i)*sigma_i**2 where the Huber function is chi(x) = (x**2)/2 for \|x\| < d chi(x) = (d**2)/2 for \|x\| >= d and the Huber constant h = (n-p)/n*(d**2 + (1-d**2)*\ scipy.stats.norm.cdf(d) - .5 - d*sqrt(2*pi)*exp(-0.5*d**2) """ def __init__(self, d=2.5, tol=1e-08, maxiter=30): self.d = d self.tol = tol self.maxiter = maxiter def __call__(self, df_resid, nobs, resid): h = ( df_resid / nobs * ( self.d ** 2 + (1 - self.d ** 2) * Gaussian.cdf(self.d) - 0.5 - self.d / (np.sqrt(2 * np.pi)) * np.exp(-0.5 * self.d ** 2) ) ) s = mad(resid) def subset(x): return np.less(np.abs(resid / x), self.d) def chi(s): return subset(s) * (resid / s) ** 2 / 2 + (1 - subset(s)) * ( self.d ** 2 / 2 ) scalehist = [np.inf, s] niter = 1 while ( np.abs(scalehist[niter - 1] - scalehist[niter]) > self.tol and niter < self.maxiter ): nscale = np.sqrt( 1 / (nobs * h) * np.sum(chi(scalehist[-1])) * scalehist[-1] ** 2 ) scalehist.append(nscale) niter += 1 # TODO: raise on convergence failure? return scalehist[-1]
hubers_scale = HuberScale()