# -*- coding: utf-8 -*-
"""
Vector Autoregressive Moving Average with eXogenous regressors model
Author: Chad Fulton
License: Simplified-BSD
"""
import contextlib
from warnings import warn
import pandas as pd
import numpy as np
from statsmodels.compat.pandas import Appender
from statsmodels.tools.tools import Bunch
from statsmodels.tools.data import _is_using_pandas
from statsmodels.tsa.vector_ar import var_model
import statsmodels.base.wrapper as wrap
from statsmodels.tools.sm_exceptions import EstimationWarning
from .kalman_filter import INVERT_UNIVARIATE, SOLVE_LU
from .mlemodel import MLEModel, MLEResults, MLEResultsWrapper
from .initialization import Initialization
from .tools import (
is_invertible, concat, prepare_exog,
constrain_stationary_multivariate, unconstrain_stationary_multivariate,
prepare_trend_spec, prepare_trend_data
)
[docs]class VARMAX(MLEModel):
r"""
Vector Autoregressive Moving Average with eXogenous regressors model
Parameters
----------
endog : array_like
The observed time-series process :math:`y`, , shaped nobs x k_endog.
exog : array_like, optional
Array of exogenous regressors, shaped nobs x k.
order : iterable
The (p,q) order of the model for the number of AR and MA parameters to
use.
trend : str{'n','c','t','ct'} or iterable, optional
Parameter controlling the deterministic trend polynomial :math:`A(t)`.
Can be specified as a string where 'c' indicates a constant (i.e. a
degree zero component of the trend polynomial), 't' indicates a
linear trend with time, and 'ct' is both. Can also be specified as an
iterable defining the non-zero polynomial exponents to include, in
increasing order. For example, `[1,1,0,1]` denotes
:math:`a + bt + ct^3`. Default is a constant trend component.
error_cov_type : {'diagonal', 'unstructured'}, optional
The structure of the covariance matrix of the error term, where
"unstructured" puts no restrictions on the matrix and "diagonal"
requires it to be a diagonal matrix (uncorrelated errors). Default is
"unstructured".
measurement_error : bool, optional
Whether or not to assume the endogenous observations `endog` were
measured with error. Default is False.
enforce_stationarity : bool, optional
Whether or not to transform the AR parameters to enforce stationarity
in the autoregressive component of the model. Default is True.
enforce_invertibility : bool, optional
Whether or not to transform the MA parameters to enforce invertibility
in the moving average component of the model. Default is True.
trend_offset : int, optional
The offset at which to start time trend values. Default is 1, so that
if `trend='t'` the trend is equal to 1, 2, ..., nobs. Typically is only
set when the model created by extending a previous dataset.
**kwargs
Keyword arguments may be used to provide default values for state space
matrices or for Kalman filtering options. See `Representation`, and
`KalmanFilter` for more details.
Attributes
----------
order : iterable
The (p,q) order of the model for the number of AR and MA parameters to
use.
trend : str{'n','c','t','ct'} or iterable
Parameter controlling the deterministic trend polynomial :math:`A(t)`.
Can be specified as a string where 'c' indicates a constant (i.e. a
degree zero component of the trend polynomial), 't' indicates a
linear trend with time, and 'ct' is both. Can also be specified as an
iterable defining the non-zero polynomial exponents to include, in
increasing order. For example, `[1,1,0,1]` denotes
:math:`a + bt + ct^3`.
error_cov_type : {'diagonal', 'unstructured'}, optional
The structure of the covariance matrix of the error term, where
"unstructured" puts no restrictions on the matrix and "diagonal"
requires it to be a diagonal matrix (uncorrelated errors). Default is
"unstructured".
measurement_error : bool, optional
Whether or not to assume the endogenous observations `endog` were
measured with error. Default is False.
enforce_stationarity : bool, optional
Whether or not to transform the AR parameters to enforce stationarity
in the autoregressive component of the model. Default is True.
enforce_invertibility : bool, optional
Whether or not to transform the MA parameters to enforce invertibility
in the moving average component of the model. Default is True.
Notes
-----
Generically, the VARMAX model is specified (see for example chapter 18 of
[1]_):
.. math::
y_t = A(t) + A_1 y_{t-1} + \dots + A_p y_{t-p} + B x_t + \epsilon_t +
M_1 \epsilon_{t-1} + \dots M_q \epsilon_{t-q}
where :math:`\epsilon_t \sim N(0, \Omega)`, and where :math:`y_t` is a
`k_endog x 1` vector. Additionally, this model allows considering the case
where the variables are measured with error.
Note that in the full VARMA(p,q) case there is a fundamental identification
problem in that the coefficient matrices :math:`\{A_i, M_j\}` are not
generally unique, meaning that for a given time series process there may
be multiple sets of matrices that equivalently represent it. See Chapter 12
of [1]_ for more information. Although this class can be used to estimate
VARMA(p,q) models, a warning is issued to remind users that no steps have
been taken to ensure identification in this case.
References
----------
.. [1] Lütkepohl, Helmut. 2007.
New Introduction to Multiple Time Series Analysis.
Berlin: Springer.
"""
def __init__(self, endog, exog=None, order=(1, 0), trend='c',
error_cov_type='unstructured', measurement_error=False,
enforce_stationarity=True, enforce_invertibility=True,
trend_offset=1, **kwargs):
# Model parameters
self.error_cov_type = error_cov_type
self.measurement_error = measurement_error
self.enforce_stationarity = enforce_stationarity
self.enforce_invertibility = enforce_invertibility
# Save the given orders
self.order = order
# Model orders
self.k_ar = int(order[0])
self.k_ma = int(order[1])
# Check for valid model
if error_cov_type not in ['diagonal', 'unstructured']:
raise ValueError('Invalid error covariance matrix type'
' specification.')
if self.k_ar == 0 and self.k_ma == 0:
raise ValueError('Invalid VARMAX(p,q) specification; at least one'
' p,q must be greater than zero.')
# Warn for VARMA model
if self.k_ar > 0 and self.k_ma > 0:
warn('Estimation of VARMA(p,q) models is not generically robust,'
' due especially to identification issues.',
EstimationWarning)
# Trend
self.trend = trend
self.trend_offset = trend_offset
self.polynomial_trend, self.k_trend = prepare_trend_spec(self.trend)
self._trend_is_const = (self.polynomial_trend.size == 1 and
self.polynomial_trend[0] == 1)
# Exogenous data
(self.k_exog, exog) = prepare_exog(exog)
# Note: at some point in the future might add state regression, as in
# SARIMAX.
self.mle_regression = self.k_exog > 0
# We need to have an array or pandas at this point
if not _is_using_pandas(endog, None):
endog = np.asanyarray(endog)
# Model order
# Used internally in various places
_min_k_ar = max(self.k_ar, 1)
self._k_order = _min_k_ar + self.k_ma
# Number of states
k_endog = endog.shape[1]
k_posdef = k_endog
k_states = k_endog * self._k_order
# By default, initialize as stationary
kwargs.setdefault('initialization', 'stationary')
# By default, use LU decomposition
kwargs.setdefault('inversion_method', INVERT_UNIVARIATE | SOLVE_LU)
# Initialize the state space model
super(VARMAX, self).__init__(
endog, exog=exog, k_states=k_states, k_posdef=k_posdef, **kwargs
)
# Set as time-varying model if we have time-trend or exog
if self.k_exog > 0 or (self.k_trend > 0 and not self._trend_is_const):
self.ssm._time_invariant = False
# Initialize the parameters
self.parameters = {}
self.parameters['trend'] = self.k_endog * self.k_trend
self.parameters['ar'] = self.k_endog**2 * self.k_ar
self.parameters['ma'] = self.k_endog**2 * self.k_ma
self.parameters['regression'] = self.k_endog * self.k_exog
if self.error_cov_type == 'diagonal':
self.parameters['state_cov'] = self.k_endog
# These parameters fill in a lower-triangular matrix which is then
# dotted with itself to get a positive definite matrix.
elif self.error_cov_type == 'unstructured':
self.parameters['state_cov'] = (
int(self.k_endog * (self.k_endog + 1) / 2)
)
self.parameters['obs_cov'] = self.k_endog * self.measurement_error
self.k_params = sum(self.parameters.values())
# Initialize trend data: we create trend data with one more observation
# than we actually have, to make it easier to insert the appropriate
# trend component into the final state intercept.
trend_data = prepare_trend_data(
self.polynomial_trend, self.k_trend, self.nobs + 1,
offset=self.trend_offset)
self._trend_data = trend_data[:-1]
self._final_trend = trend_data[-1:]
# Initialize known elements of the state space matrices
# If we have exog effects, then the state intercept needs to be
# time-varying
if (self.k_trend > 0 and not self._trend_is_const) or self.k_exog > 0:
self.ssm['state_intercept'] = np.zeros((self.k_states, self.nobs))
# self.ssm['obs_intercept'] = np.zeros((self.k_endog, self.nobs))
# The design matrix is just an identity for the first k_endog states
idx = np.diag_indices(self.k_endog)
self.ssm[('design',) + idx] = 1
# The transition matrix is described in four blocks, where the upper
# left block is in companion form with the autoregressive coefficient
# matrices (so it is shaped k_endog * k_ar x k_endog * k_ar) ...
if self.k_ar > 0:
idx = np.diag_indices((self.k_ar - 1) * self.k_endog)
idx = idx[0] + self.k_endog, idx[1]
self.ssm[('transition',) + idx] = 1
# ... and the lower right block is in companion form with zeros as the
# coefficient matrices (it is shaped k_endog * k_ma x k_endog * k_ma).
idx = np.diag_indices((self.k_ma - 1) * self.k_endog)
idx = (idx[0] + (_min_k_ar + 1) * self.k_endog,
idx[1] + _min_k_ar * self.k_endog)
self.ssm[('transition',) + idx] = 1
# The selection matrix is described in two blocks, where the upper
# block selects the all k_posdef errors in the first k_endog rows
# (the upper block is shaped k_endog * k_ar x k) and the lower block
# also selects all k_posdef errors in the first k_endog rows (the lower
# block is shaped k_endog * k_ma x k).
idx = np.diag_indices(self.k_endog)
self.ssm[('selection',) + idx] = 1
idx = idx[0] + _min_k_ar * self.k_endog, idx[1]
if self.k_ma > 0:
self.ssm[('selection',) + idx] = 1
# Cache some indices
if self._trend_is_const and self.k_exog == 0:
self._idx_state_intercept = np.s_['state_intercept', :k_endog, :]
elif self.k_trend > 0 or self.k_exog > 0:
self._idx_state_intercept = np.s_['state_intercept', :k_endog, :-1]
if self.k_ar > 0:
self._idx_transition = np.s_['transition', :k_endog, :]
else:
self._idx_transition = np.s_['transition', :k_endog, k_endog:]
if self.error_cov_type == 'diagonal':
self._idx_state_cov = (
('state_cov',) + np.diag_indices(self.k_endog))
elif self.error_cov_type == 'unstructured':
self._idx_lower_state_cov = np.tril_indices(self.k_endog)
if self.measurement_error:
self._idx_obs_cov = ('obs_cov',) + np.diag_indices(self.k_endog)
# Cache some slices
def _slice(key, offset):
length = self.parameters[key]
param_slice = np.s_[offset:offset + length]
offset += length
return param_slice, offset
offset = 0
self._params_trend, offset = _slice('trend', offset)
self._params_ar, offset = _slice('ar', offset)
self._params_ma, offset = _slice('ma', offset)
self._params_regression, offset = _slice('regression', offset)
self._params_state_cov, offset = _slice('state_cov', offset)
self._params_obs_cov, offset = _slice('obs_cov', offset)
# Variable holding optional final `exog`
# (note: self._final_trend was set earlier)
self._final_exog = None
# Update _init_keys attached by super
self._init_keys += ['order', 'trend', 'error_cov_type',
'measurement_error', 'enforce_stationarity',
'enforce_invertibility'] + list(kwargs.keys())
[docs] def clone(self, endog, exog=None, **kwargs):
return self._clone_from_init_kwds(endog, exog=exog, **kwargs)
@property
def _res_classes(self):
return {'fit': (VARMAXResults, VARMAXResultsWrapper)}
@property
def start_params(self):
params = np.zeros(self.k_params, dtype=np.float64)
# A. Run a multivariate regression to get beta estimates
endog = pd.DataFrame(self.endog.copy())
endog = endog.interpolate()
endog = endog.fillna(method='backfill').values
exog = None
if self.k_trend > 0 and self.k_exog > 0:
exog = np.c_[self._trend_data, self.exog]
elif self.k_trend > 0:
exog = self._trend_data
elif self.k_exog > 0:
exog = self.exog
# Although the Kalman filter can deal with missing values in endog,
# conditional sum of squares cannot
if np.any(np.isnan(endog)):
mask = ~np.any(np.isnan(endog), axis=1)
endog = endog[mask]
if exog is not None:
exog = exog[mask]
# Regression and trend effects via OLS
trend_params = np.zeros(0)
exog_params = np.zeros(0)
if self.k_trend > 0 or self.k_exog > 0:
trendexog_params = np.linalg.pinv(exog).dot(endog)
endog -= np.dot(exog, trendexog_params)
if self.k_trend > 0:
trend_params = trendexog_params[:self.k_trend].T
if self.k_endog > 0:
exog_params = trendexog_params[self.k_trend:].T
# B. Run a VAR model on endog to get trend, AR parameters
ar_params = []
k_ar = self.k_ar if self.k_ar > 0 else 1
mod_ar = var_model.VAR(endog)
res_ar = mod_ar.fit(maxlags=k_ar, ic=None, trend='nc')
if self.k_ar > 0:
ar_params = np.array(res_ar.params).T.ravel()
endog = res_ar.resid
# Test for stationarity
if self.k_ar > 0 and self.enforce_stationarity:
coefficient_matrices = (
ar_params.reshape(
self.k_endog * self.k_ar, self.k_endog
).T
).reshape(self.k_endog, self.k_endog, self.k_ar).T
stationary = is_invertible([1] + list(-coefficient_matrices))
if not stationary:
warn('Non-stationary starting autoregressive parameters'
' found. Using zeros as starting parameters.')
ar_params *= 0
# C. Run a VAR model on the residuals to get MA parameters
ma_params = []
if self.k_ma > 0:
mod_ma = var_model.VAR(endog)
res_ma = mod_ma.fit(maxlags=self.k_ma, ic=None, trend='nc')
ma_params = np.array(res_ma.params.T).ravel()
# Test for invertibility
if self.enforce_invertibility:
coefficient_matrices = (
ma_params.reshape(
self.k_endog * self.k_ma, self.k_endog
).T
).reshape(self.k_endog, self.k_endog, self.k_ma).T
invertible = is_invertible([1] + list(-coefficient_matrices))
if not invertible:
warn('Non-stationary starting moving-average parameters'
' found. Using zeros as starting parameters.')
ma_params *= 0
# Transform trend / exog params from mean form to intercept form
if self.k_ar > 0 and (self.k_trend > 0 or self.mle_regression):
coefficient_matrices = (
ar_params.reshape(
self.k_endog * self.k_ar, self.k_endog
).T
).reshape(self.k_endog, self.k_endog, self.k_ar).T
tmp = np.eye(self.k_endog) - np.sum(coefficient_matrices, axis=0)
if self.k_trend > 0:
trend_params = np.dot(tmp, trend_params)
if self.mle_regression > 0:
exog_params = np.dot(tmp, exog_params)
# 1. Intercept terms
if self.k_trend > 0:
params[self._params_trend] = trend_params.ravel()
# 2. AR terms
if self.k_ar > 0:
params[self._params_ar] = ar_params
# 3. MA terms
if self.k_ma > 0:
params[self._params_ma] = ma_params
# 4. Regression terms
if self.mle_regression:
params[self._params_regression] = exog_params.ravel()
# 5. State covariance terms
if self.error_cov_type == 'diagonal':
params[self._params_state_cov] = res_ar.sigma_u.diagonal()
elif self.error_cov_type == 'unstructured':
cov_factor = np.linalg.cholesky(res_ar.sigma_u)
params[self._params_state_cov] = (
cov_factor[self._idx_lower_state_cov].ravel())
# 5. Measurement error variance terms
if self.measurement_error:
if self.k_ma > 0:
params[self._params_obs_cov] = res_ma.sigma_u.diagonal()
else:
params[self._params_obs_cov] = res_ar.sigma_u.diagonal()
return params
@property
def param_names(self):
param_names = []
endog_names = self.endog_names
if not isinstance(self.endog_names, list):
endog_names = [endog_names]
# 1. Intercept terms
if self.k_trend > 0:
for j in range(self.k_endog):
for i in self.polynomial_trend.nonzero()[0]:
if i == 0:
param_names += ['intercept.%s' % endog_names[j]]
elif i == 1:
param_names += ['drift.%s' % endog_names[j]]
else:
param_names += ['trend.%d.%s' % (i, endog_names[j])]
# 2. AR terms
param_names += [
'L%d.%s.%s' % (i+1, endog_names[k], endog_names[j])
for j in range(self.k_endog)
for i in range(self.k_ar)
for k in range(self.k_endog)
]
# 3. MA terms
param_names += [
'L%d.e(%s).%s' % (i+1, endog_names[k], endog_names[j])
for j in range(self.k_endog)
for i in range(self.k_ma)
for k in range(self.k_endog)
]
# 4. Regression terms
param_names += [
'beta.%s.%s' % (self.exog_names[j], endog_names[i])
for i in range(self.k_endog)
for j in range(self.k_exog)
]
# 5. State covariance terms
if self.error_cov_type == 'diagonal':
param_names += [
'sigma2.%s' % endog_names[i]
for i in range(self.k_endog)
]
elif self.error_cov_type == 'unstructured':
param_names += [
('sqrt.var.%s' % endog_names[i] if i == j else
'sqrt.cov.%s.%s' % (endog_names[j], endog_names[i]))
for i in range(self.k_endog)
for j in range(i+1)
]
# 5. Measurement error variance terms
if self.measurement_error:
param_names += [
'measurement_variance.%s' % endog_names[i]
for i in range(self.k_endog)
]
return param_names
def _validate_can_fix_params(self, param_names):
super(VARMAX, self)._validate_can_fix_params(param_names)
ix = np.cumsum(list(self.parameters.values()))[:-1]
(_, ar_names, ma_names, _, _, _) = [
arr.tolist() for arr in np.array_split(self.param_names, ix)]
if self.enforce_stationarity and self.k_ar > 0:
if self.k_endog > 1 or self.k_ar > 1:
fix_all = param_names.issuperset(ar_names)
fix_any = (
len(param_names.intersection(ar_names)) > 0)
if fix_any and not fix_all:
raise ValueError(
'Cannot fix individual autoregressive parameters'
' when `enforce_stationarity=True`. In this case,'
' must either fix all autoregressive parameters or'
' none.')
if self.enforce_invertibility and self.k_ma > 0:
if self.k_endog or self.k_ma > 1:
fix_all = param_names.issuperset(ma_names)
fix_any = (
len(param_names.intersection(ma_names)) > 0)
if fix_any and not fix_all:
raise ValueError(
'Cannot fix individual moving average parameters'
' when `enforce_invertibility=True`. In this case,'
' must either fix all moving average parameters or'
' none.')
[docs] def update(self, params, transformed=True, includes_fixed=False,
complex_step=False):
params = self.handle_params(params, transformed=transformed,
includes_fixed=includes_fixed)
# 1. State intercept
# - Exog
if self.mle_regression:
exog_params = params[self._params_regression].reshape(
self.k_endog, self.k_exog).T
intercept = np.dot(self.exog[1:], exog_params)
self.ssm[self._idx_state_intercept] = intercept.T
if self._final_exog is not None:
self.ssm['state_intercept', :self.k_endog, -1] = np.dot(
self._final_exog, exog_params)
# - Trend
if self.k_trend > 0:
# If we did not set the intercept above, zero it out so we can
# just += later
if not self.mle_regression:
zero = np.array(0, dtype=params.dtype)
self.ssm['state_intercept', :] = zero
trend_params = params[self._params_trend].reshape(
self.k_endog, self.k_trend).T
if self._trend_is_const:
intercept = trend_params
else:
intercept = np.dot(self._trend_data[1:], trend_params)
self.ssm[self._idx_state_intercept] += intercept.T
if self._final_trend is not None and not self._trend_is_const:
self.ssm['state_intercept', :self.k_endog, -1:] += np.dot(
self._final_trend, trend_params).T
# Need to set the last state intercept to np.nan (with appropriate
# dtype) if we don't have the final exog
if self.mle_regression and self._final_exog is None:
nan = np.array(np.nan, dtype=params.dtype)
self.ssm['state_intercept', :self.k_endog, -1] = nan
# 2. Transition
ar = params[self._params_ar].reshape(
self.k_endog, self.k_endog * self.k_ar)
ma = params[self._params_ma].reshape(
self.k_endog, self.k_endog * self.k_ma)
self.ssm[self._idx_transition] = np.c_[ar, ma]
# 3. State covariance
if self.error_cov_type == 'diagonal':
self.ssm[self._idx_state_cov] = (
params[self._params_state_cov]
)
elif self.error_cov_type == 'unstructured':
state_cov_lower = np.zeros(self.ssm['state_cov'].shape,
dtype=params.dtype)
state_cov_lower[self._idx_lower_state_cov] = (
params[self._params_state_cov])
self.ssm['state_cov'] = np.dot(state_cov_lower, state_cov_lower.T)
# 4. Observation covariance
if self.measurement_error:
self.ssm[self._idx_obs_cov] = params[self._params_obs_cov]
@contextlib.contextmanager
def _set_final_exog(self, exog):
"""
Set the final state intercept value using out-of-sample `exog` / trend
Parameters
----------
exog : ndarray
Out-of-sample `exog` values, usually produced by
`_validate_out_of_sample_exog` to ensure the correct shape (this
method does not do any additional validation of its own).
out_of_sample : int
Number of out-of-sample periods.
Notes
-----
We need special handling for simulating or forecasting with `exog` or
trend, because if we had these then the last predicted_state has been
set to NaN since we did not have the appropriate `exog` to create it.
Since we handle trend in the same way as `exog`, we still have this
issue when only trend is used without `exog`.
"""
cache_value = self._final_exog
if self.k_exog > 0:
if exog is not None:
exog = np.atleast_1d(exog)
if exog.ndim == 2:
exog = exog[:1]
try:
exog = np.reshape(exog[:1], (self.k_exog,))
except ValueError:
raise ValueError('Provided exogenous values are not of the'
' appropriate shape. Required %s, got %s.'
% (str((self.k_exog,)),
str(exog.shape)))
self._final_exog = exog
try:
yield
finally:
self._final_exog = cache_value
[docs] @Appender(MLEModel.simulate.__doc__)
def simulate(self, params, nsimulations, measurement_shocks=None,
state_shocks=None, initial_state=None, anchor=None,
repetitions=None, exog=None, extend_model=None,
extend_kwargs=None, transformed=True, includes_fixed=False,
**kwargs):
with self._set_final_exog(exog):
out = super(VARMAX, self).simulate(
params, nsimulations, measurement_shocks=measurement_shocks,
state_shocks=state_shocks, initial_state=initial_state,
anchor=anchor, repetitions=repetitions, exog=exog,
extend_model=extend_model, extend_kwargs=extend_kwargs,
transformed=transformed, includes_fixed=includes_fixed,
**kwargs)
return out
[docs]class VARMAXResults(MLEResults):
"""
Class to hold results from fitting an VARMAX model.
Parameters
----------
model : VARMAX instance
The fitted model instance
Attributes
----------
specification : dictionary
Dictionary including all attributes from the VARMAX model instance.
coefficient_matrices_var : ndarray
Array containing autoregressive lag polynomial coefficient matrices,
ordered from lowest degree to highest.
coefficient_matrices_vma : ndarray
Array containing moving average lag polynomial coefficients,
ordered from lowest degree to highest.
See Also
--------
statsmodels.tsa.statespace.kalman_filter.FilterResults
statsmodels.tsa.statespace.mlemodel.MLEResults
"""
def __init__(self, model, params, filter_results, cov_type=None,
cov_kwds=None, **kwargs):
super(VARMAXResults, self).__init__(model, params, filter_results,
cov_type, cov_kwds, **kwargs)
self.specification = Bunch(**{
# Set additional model parameters
'error_cov_type': self.model.error_cov_type,
'measurement_error': self.model.measurement_error,
'enforce_stationarity': self.model.enforce_stationarity,
'enforce_invertibility': self.model.enforce_invertibility,
'trend_offset': self.model.trend_offset,
'order': self.model.order,
# Model order
'k_ar': self.model.k_ar,
'k_ma': self.model.k_ma,
# Trend / Regression
'trend': self.model.trend,
'k_trend': self.model.k_trend,
'k_exog': self.model.k_exog,
})
# Polynomials / coefficient matrices
self.coefficient_matrices_var = None
self.coefficient_matrices_vma = None
if self.model.k_ar > 0:
ar_params = np.array(self.params[self.model._params_ar])
k_endog = self.model.k_endog
k_ar = self.model.k_ar
self.coefficient_matrices_var = (
ar_params.reshape(k_endog * k_ar, k_endog).T
).reshape(k_endog, k_endog, k_ar).T
if self.model.k_ma > 0:
ma_params = np.array(self.params[self.model._params_ma])
k_endog = self.model.k_endog
k_ma = self.model.k_ma
self.coefficient_matrices_vma = (
ma_params.reshape(k_endog * k_ma, k_endog).T
).reshape(k_endog, k_endog, k_ma).T
[docs] def extend(self, endog, exog=None, **kwargs):
# If we have exog, then the last element of predicted_state and
# predicted_state_cov are nan (since they depend on the exog associated
# with the first out-of-sample point), so we need to compute them here
if exog is not None:
fcast = self.get_prediction(self.nobs, self.nobs, exog=exog[:1])
fcast_results = fcast.prediction_results
initial_state = fcast_results.predicted_state[..., 0]
initial_state_cov = fcast_results.predicted_state_cov[..., 0]
else:
initial_state = self.predicted_state[..., -1]
initial_state_cov = self.predicted_state_cov[..., -1]
kwargs.setdefault('trend_offset', self.nobs + self.model.trend_offset)
mod = self.model.clone(endog, exog=exog, **kwargs)
mod.ssm.initialization = Initialization(
mod.k_states, 'known', constant=initial_state,
stationary_cov=initial_state_cov)
if self.smoother_results is not None:
res = mod.smooth(self.params)
else:
res = mod.filter(self.params)
return res
@contextlib.contextmanager
def _set_final_predicted_state(self, exog, out_of_sample):
"""
Set the final predicted state value using out-of-sample `exog` / trend
Parameters
----------
exog : ndarray
Out-of-sample `exog` values, usually produced by
`_validate_out_of_sample_exog` to ensure the correct shape (this
method does not do any additional validation of its own).
out_of_sample : int
Number of out-of-sample periods.
Notes
-----
We need special handling for forecasting with `exog`, because
if we had these then the last predicted_state has been set to NaN since
we did not have the appropriate `exog` to create it.
"""
flag = out_of_sample and self.model.k_exog > 0
if flag:
tmp_endog = concat([
self.model.endog[-1:], np.zeros((1, self.model.k_endog))])
if self.model.k_exog > 0:
tmp_exog = concat([self.model.exog[-1:], exog[:1]])
else:
tmp_exog = None
tmp_trend_offset = self.model.trend_offset + self.nobs - 1
tmp_mod = self.model.clone(tmp_endog, exog=tmp_exog,
trend_offset=tmp_trend_offset)
constant = self.filter_results.predicted_state[:, -2]
stationary_cov = self.filter_results.predicted_state_cov[:, :, -2]
tmp_mod.ssm.initialize_known(constant=constant,
stationary_cov=stationary_cov)
tmp_res = tmp_mod.filter(self.params, transformed=True,
includes_fixed=True, return_ssm=True)
# Patch up `predicted_state`
self.filter_results.predicted_state[:, -1] = (
tmp_res.predicted_state[:, -2])
try:
yield
finally:
if flag:
self.filter_results.predicted_state[:, -1] = np.nan
[docs] @Appender(MLEResults.get_prediction.__doc__)
def get_prediction(self, start=None, end=None, dynamic=False, index=None,
exog=None, **kwargs):
if start is None:
start = 0
# Handle end (e.g. date)
_start, _end, out_of_sample, _ = (
self.model._get_prediction_index(start, end, index, silent=True))
# Normalize `exog`
exog = self.model._validate_out_of_sample_exog(exog, out_of_sample)
# Handle trend offset for extended model
extend_kwargs = {}
if self.model.k_trend > 0:
extend_kwargs['trend_offset'] = (
self.model.trend_offset + self.nobs)
# Get the prediction
with self.model._set_final_exog(exog):
with self._set_final_predicted_state(exog, out_of_sample):
out = super(VARMAXResults, self).get_prediction(
start=start, end=end, dynamic=dynamic, index=index,
exog=exog, extend_kwargs=extend_kwargs, **kwargs)
return out
[docs] @Appender(MLEResults.simulate.__doc__)
def simulate(self, nsimulations, measurement_shocks=None,
state_shocks=None, initial_state=None, anchor=None,
repetitions=None, exog=None, extend_model=None,
extend_kwargs=None, **kwargs):
if anchor is None or anchor == 'start':
iloc = 0
elif anchor == 'end':
iloc = self.nobs
else:
iloc, _, _ = self.model._get_index_loc(anchor)
if iloc < 0:
iloc = self.nobs + iloc
if iloc > self.nobs:
raise ValueError('Cannot anchor simulation after the estimated'
' sample.')
out_of_sample = max(iloc + nsimulations - self.nobs, 0)
# Normalize `exog`
exog = self.model._validate_out_of_sample_exog(exog, out_of_sample)
with self._set_final_predicted_state(exog, out_of_sample):
out = super(VARMAXResults, self).simulate(
nsimulations, measurement_shocks=measurement_shocks,
state_shocks=state_shocks, initial_state=initial_state,
anchor=anchor, repetitions=repetitions, exog=exog,
extend_model=extend_model, extend_kwargs=extend_kwargs,
**kwargs)
return out
def _news_previous_results(self, previous, start, end, periods):
# We need to figure out the out-of-sample exog, so that we can add back
# in the last exog, predicted state
exog = None
out_of_sample = self.nobs - previous.nobs
if self.model.k_exog > 0 and out_of_sample > 0:
exog = self.model.exog[-out_of_sample:]
# We also need to manually compute the `revised` results,
rev_endog = self.model.endog[:previous.nobs].copy()
rev_endog[previous.filter_results.missing.astype(bool).T] = np.nan
has_revisions = not np.allclose(rev_endog, previous.model.endog,
equal_nan=True)
revised_results = None
if has_revisions:
rev_exog = None
if self.model.exog is not None:
rev_exog = self.model.exog[:previous.nobs].copy()
rev_mod = previous.model.clone(rev_endog, exog=rev_exog)
revised = rev_mod.smooth(self.params)
# Compute the news
with contextlib.ExitStack() as stack:
stack.enter_context(previous.model._set_final_exog(exog))
stack.enter_context(previous._set_final_predicted_state(
exog, out_of_sample))
if has_revisions:
stack.enter_context(revised.model._set_final_exog(exog))
stack.enter_context(revised._set_final_predicted_state(
exog, out_of_sample))
revised_results = revised.smoother_results
out = self.smoother_results.news(
previous.smoother_results, start=start, end=end,
revised=revised_results)
return out
[docs] @Appender(MLEResults.summary.__doc__)
def summary(self, alpha=.05, start=None, separate_params=True):
from statsmodels.iolib.summary import summary_params
# Create the model name
spec = self.specification
if spec.k_ar > 0 and spec.k_ma > 0:
model_name = 'VARMA'
order = '(%s,%s)' % (spec.k_ar, spec.k_ma)
elif spec.k_ar > 0:
model_name = 'VAR'
order = '(%s)' % (spec.k_ar)
else:
model_name = 'VMA'
order = '(%s)' % (spec.k_ma)
if spec.k_exog > 0:
model_name += 'X'
model_name = [model_name + order]
if spec.k_trend > 0:
model_name.append('intercept')
if spec.measurement_error:
model_name.append('measurement error')
summary = super(VARMAXResults, self).summary(
alpha=alpha, start=start, model_name=model_name,
display_params=not separate_params
)
if separate_params:
indices = np.arange(len(self.params))
def make_table(self, mask, title, strip_end=True):
res = (self, self.params[mask], self.bse[mask],
self.zvalues[mask], self.pvalues[mask],
self.conf_int(alpha)[mask])
param_names = []
for name in np.array(self.data.param_names)[mask].tolist():
if strip_end:
param_name = '.'.join(name.split('.')[:-1])
else:
param_name = name
if name in self.fixed_params:
param_name = '%s (fixed)' % param_name
param_names.append(param_name)
return summary_params(res, yname=None, xname=param_names,
alpha=alpha, use_t=False, title=title)
# Add parameter tables for each endogenous variable
k_endog = self.model.k_endog
k_ar = self.model.k_ar
k_ma = self.model.k_ma
k_trend = self.model.k_trend
k_exog = self.model.k_exog
endog_masks = []
for i in range(k_endog):
masks = []
offset = 0
# 1. Intercept terms
if k_trend > 0:
masks.append(np.arange(i, i + k_endog * k_trend, k_endog))
offset += k_endog * k_trend
# 2. AR terms
if k_ar > 0:
start = i * k_endog * k_ar
end = (i + 1) * k_endog * k_ar
masks.append(
offset + np.arange(start, end))
offset += k_ar * k_endog**2
# 3. MA terms
if k_ma > 0:
start = i * k_endog * k_ma
end = (i + 1) * k_endog * k_ma
masks.append(
offset + np.arange(start, end))
offset += k_ma * k_endog**2
# 4. Regression terms
if k_exog > 0:
masks.append(
offset + np.arange(i * k_exog, (i + 1) * k_exog))
offset += k_endog * k_exog
# 5. Measurement error variance terms
if self.model.measurement_error:
masks.append(
np.array(self.model.k_params - i - 1, ndmin=1))
# Create the table
mask = np.concatenate(masks)
endog_masks.append(mask)
endog_names = self.model.endog_names
if not isinstance(endog_names, list):
endog_names = [endog_names]
title = "Results for equation %s" % endog_names[i]
table = make_table(self, mask, title)
summary.tables.append(table)
# State covariance terms
state_cov_mask = (
np.arange(len(self.params))[self.model._params_state_cov])
table = make_table(self, state_cov_mask, "Error covariance matrix",
strip_end=False)
summary.tables.append(table)
# Add a table for all other parameters
masks = []
for m in (endog_masks, [state_cov_mask]):
m = np.array(m).flatten()
if len(m) > 0:
masks.append(m)
masks = np.concatenate(masks)
inverse_mask = np.array(list(set(indices).difference(set(masks))))
if len(inverse_mask) > 0:
table = make_table(self, inverse_mask, "Other parameters",
strip_end=False)
summary.tables.append(table)
return summary
class VARMAXResultsWrapper(MLEResultsWrapper):
_attrs = {}
_wrap_attrs = wrap.union_dicts(MLEResultsWrapper._wrap_attrs,
_attrs)
_methods = {}
_wrap_methods = wrap.union_dicts(MLEResultsWrapper._wrap_methods,
_methods)
wrap.populate_wrapper(VARMAXResultsWrapper, VARMAXResults) # noqa:E305