# -*- coding: utf-8 -*-
"""
Vector Autoregression (VAR) processes
References
----------
Lütkepohl (2005) New Introduction to Multiple Time Series Analysis
"""
from statsmodels.compat.pandas import deprecate_kwarg
from statsmodels.compat.python import lrange
from collections import defaultdict
from io import StringIO
import numpy as np
import pandas as pd
import scipy.stats as stats
import statsmodels.base.wrapper as wrap
from statsmodels.iolib.table import SimpleTable
from statsmodels.tools.decorators import cache_readonly, deprecated_alias
from statsmodels.tools.linalg import logdet_symm
from statsmodels.tools.sm_exceptions import OutputWarning
from statsmodels.tools.validation import array_like
from statsmodels.tsa.base.tsa_model import (
TimeSeriesModel,
TimeSeriesResultsWrapper,
)
import statsmodels.tsa.tsatools as tsa
from statsmodels.tsa.tsatools import duplication_matrix, unvec, vec
from statsmodels.tsa.vector_ar import output, plotting, util
from statsmodels.tsa.vector_ar.hypothesis_test_results import (
CausalityTestResults,
NormalityTestResults,
WhitenessTestResults,
)
from statsmodels.tsa.vector_ar.irf import IRAnalysis
from statsmodels.tsa.vector_ar.output import VARSummary
# -------------------------------------------------------------------------------
# VAR process routines
def ma_rep(coefs, maxn=10):
r"""
MA(\infty) representation of VAR(p) process
Parameters
----------
coefs : ndarray (p x k x k)
maxn : int
Number of MA matrices to compute
Notes
-----
VAR(p) process as
.. math:: y_t = A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t
can be equivalently represented as
.. math:: y_t = \mu + \sum_{i=0}^\infty \Phi_i u_{t-i}
e.g. can recursively compute the \Phi_i matrices with \Phi_0 = I_k
Returns
-------
phis : ndarray (maxn + 1 x k x k)
"""
p, k, k = coefs.shape
phis = np.zeros((maxn+1, k, k))
phis[0] = np.eye(k)
# recursively compute Phi matrices
for i in range(1, maxn + 1):
for j in range(1, i+1):
if j > p:
break
phis[i] += np.dot(phis[i-j], coefs[j-1])
return phis
def is_stable(coefs, verbose=False):
"""
Determine stability of VAR(p) system by examining the eigenvalues of the
VAR(1) representation
Parameters
----------
coefs : ndarray (p x k x k)
Returns
-------
is_stable : bool
"""
A_var1 = util.comp_matrix(coefs)
eigs = np.linalg.eigvals(A_var1)
if verbose:
print('Eigenvalues of VAR(1) rep')
for val in np.abs(eigs):
print(val)
return (np.abs(eigs) <= 1).all()
def var_acf(coefs, sig_u, nlags=None):
"""
Compute autocovariance function ACF_y(h) up to nlags of stable VAR(p)
process
Parameters
----------
coefs : ndarray (p x k x k)
Coefficient matrices A_i
sig_u : ndarray (k x k)
Covariance of white noise process u_t
nlags : int, optional
Defaults to order p of system
Notes
-----
Ref: Lütkepohl p.28-29
Returns
-------
acf : ndarray, (p, k, k)
"""
p, k, _ = coefs.shape
if nlags is None:
nlags = p
# p x k x k, ACF for lags 0, ..., p-1
result = np.zeros((nlags + 1, k, k))
result[:p] = _var_acf(coefs, sig_u)
# yule-walker equations
for h in range(p, nlags + 1):
# compute ACF for lag=h
# G(h) = A_1 G(h-1) + ... + A_p G(h-p)
for j in range(p):
result[h] += np.dot(coefs[j], result[h-j-1])
return result
def _var_acf(coefs, sig_u):
"""
Compute autocovariance function ACF_y(h) for h=1,...,p
Notes
-----
Lütkepohl (2005) p.29
"""
p, k, k2 = coefs.shape
assert(k == k2)
A = util.comp_matrix(coefs)
# construct VAR(1) noise covariance
SigU = np.zeros((k*p, k*p))
SigU[:k, :k] = sig_u
# vec(ACF) = (I_(kp)^2 - kron(A, A))^-1 vec(Sigma_U)
vecACF = np.linalg.solve(np.eye((k*p)**2) - np.kron(A, A), vec(SigU))
acf = unvec(vecACF)
acf = [acf[:k, k * i:k * (i + 1)] for i in range(p)]
acf = np.array(acf)
return acf
def forecast_cov(ma_coefs, sigma_u, steps):
r"""
Compute theoretical forecast error variance matrices
Parameters
----------
steps : int
Number of steps ahead
Notes
-----
.. math:: \mathrm{MSE}(h) = \sum_{i=0}^{h-1} \Phi \Sigma_u \Phi^T
Returns
-------
forc_covs : ndarray (steps x neqs x neqs)
"""
neqs = len(sigma_u)
forc_covs = np.zeros((steps, neqs, neqs))
prior = np.zeros((neqs, neqs))
for h in range(steps):
# Sigma(h) = Sigma(h-1) + Phi Sig_u Phi'
phi = ma_coefs[h]
var = phi @ sigma_u @ phi.T
forc_covs[h] = prior = prior + var
return forc_covs
mse = forecast_cov
def forecast(y, coefs, trend_coefs, steps, exog=None):
"""
Produce linear minimum MSE forecast
Parameters
----------
y : ndarray (k_ar x neqs)
coefs : ndarray (k_ar x neqs x neqs)
trend_coefs : ndarray (1 x neqs) or (neqs)
steps : int
exog : ndarray (trend_coefs.shape[1] x neqs)
Returns
-------
forecasts : ndarray (steps x neqs)
Notes
-----
Lütkepohl p. 37
"""
p = len(coefs)
k = len(coefs[0])
# initial value
forcs = np.zeros((steps, k))
if exog is not None and trend_coefs is not None:
forcs += np.dot(exog, trend_coefs)
# to make existing code (with trend_coefs=intercept and without exog) work:
elif exog is None and trend_coefs is not None:
forcs += trend_coefs
# h=0 forecast should be latest observation
# forcs[0] = y[-1]
# make indices easier to think about
for h in range(1, steps + 1):
# y_t(h) = intercept + sum_1^p A_i y_t_(h-i)
f = forcs[h - 1]
for i in range(1, p + 1):
# slightly hackish
if h - i <= 0:
# e.g. when h=1, h-1 = 0, which is y[-1]
prior_y = y[h - i - 1]
else:
# e.g. when h=2, h-1=1, which is forcs[0]
prior_y = forcs[h - i - 1]
# i=1 is coefs[0]
f = f + np.dot(coefs[i - 1], prior_y)
forcs[h - 1] = f
return forcs
def _forecast_vars(steps, ma_coefs, sig_u):
"""_forecast_vars function used by VECMResults. Note that the definition
of the local variable covs is the same as in VARProcess and as such it
differs from the one in VARResults!
Parameters
----------
steps
ma_coefs
sig_u
Returns
-------
"""
covs = mse(ma_coefs, sig_u, steps)
# Take diagonal for each cov
neqs = len(sig_u)
inds = np.arange(neqs)
return covs[:, inds, inds]
def forecast_interval(y, coefs, trend_coefs, sig_u, steps=5, alpha=0.05,
exog=1):
assert(0 < alpha < 1)
q = util.norm_signif_level(alpha)
point_forecast = forecast(y, coefs, trend_coefs, steps, exog)
ma_coefs = ma_rep(coefs, steps)
sigma = np.sqrt(_forecast_vars(steps, ma_coefs, sig_u))
forc_lower = point_forecast - q * sigma
forc_upper = point_forecast + q * sigma
return point_forecast, forc_lower, forc_upper
def var_loglike(resid, omega, nobs):
r"""
Returns the value of the VAR(p) log-likelihood.
Parameters
----------
resid : ndarray (T x K)
omega : ndarray
Sigma hat matrix. Each element i,j is the average product of the
OLS residual for variable i and the OLS residual for variable j or
np.dot(resid.T,resid)/nobs. There should be no correction for the
degrees of freedom.
nobs : int
Returns
-------
llf : float
The value of the loglikelihood function for a VAR(p) model
Notes
-----
The loglikelihood function for the VAR(p) is
.. math::
-\left(\frac{T}{2}\right)
\left(\ln\left|\Omega\right|-K\ln\left(2\pi\right)-K\right)
"""
logdet = logdet_symm(np.asarray(omega))
neqs = len(omega)
part1 = - (nobs * neqs / 2) * np.log(2 * np.pi)
part2 = - (nobs / 2) * (logdet + neqs)
return part1 + part2
def _reordered(self, order):
# Create new arrays to hold rearranged results from .fit()
endog = self.endog
endog_lagged = self.endog_lagged
params = self.params
sigma_u = self.sigma_u
names = self.names
k_ar = self.k_ar
endog_new = np.zeros([np.size(endog, 0), np.size(endog, 1)])
endog_lagged_new = np.zeros([np.size(endog_lagged, 0), np.size(endog_lagged, 1)])
params_new_inc, params_new = [np.zeros([np.size(params, 0), np.size(params, 1)])
for i in range(2)]
sigma_u_new_inc, sigma_u_new = [np.zeros([np.size(sigma_u, 0), np.size(sigma_u, 1)])
for i in range(2)]
num_end = len(self.params[0])
names_new = []
# Rearrange elements and fill in new arrays
k = self.k_trend
for i, c in enumerate(order):
endog_new[:, i] = self.endog[:, c]
if k > 0:
params_new_inc[0, i] = params[0, i]
endog_lagged_new[:, 0] = endog_lagged[:, 0]
for j in range(k_ar):
params_new_inc[i+j*num_end+k, :] = self.params[c+j*num_end+k, :]
endog_lagged_new[:, i+j*num_end+k] = endog_lagged[:, c+j*num_end+k]
sigma_u_new_inc[i, :] = sigma_u[c, :]
names_new.append(names[c])
for i, c in enumerate(order):
params_new[:, i] = params_new_inc[:, c]
sigma_u_new[:, i] = sigma_u_new_inc[:, c]
return VARResults(endog=endog_new, endog_lagged=endog_lagged_new,
params=params_new, sigma_u=sigma_u_new,
lag_order=self.k_ar, model=self.model,
trend='c', names=names_new, dates=self.dates)
def orth_ma_rep(results, maxn=10, P=None):
r"""Compute Orthogonalized MA coefficient matrices using P matrix such
that :math:`\Sigma_u = PP^\prime`. P defaults to the Cholesky
decomposition of :math:`\Sigma_u`
Parameters
----------
results : VARResults or VECMResults
maxn : int
Number of coefficient matrices to compute
P : ndarray (neqs x neqs), optional
Matrix such that Sigma_u = PP', defaults to the Cholesky decomposition.
Returns
-------
coefs : ndarray (maxn x neqs x neqs)
"""
if P is None:
P = results._chol_sigma_u
ma_mats = results.ma_rep(maxn=maxn)
return np.array([np.dot(coefs, P) for coefs in ma_mats])
def test_normality(results, signif=0.05):
"""
Test assumption of normal-distributed errors using Jarque-Bera-style
omnibus Chi^2 test
Parameters
----------
results : VARResults or statsmodels.tsa.vecm.vecm.VECMResults
signif : float
The test's significance level.
Notes
-----
H0 (null) : data are generated by a Gaussian-distributed process
Returns
-------
result : NormalityTestResults
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
.. [2] Kilian, L. & Demiroglu, U. (2000). "Residual-Based Tests for
Normality in Autoregressions: Asymptotic Theory and Simulation
Evidence." Journal of Business & Economic Statistics
"""
resid_c = results.resid - results.resid.mean(0)
sig = np.dot(resid_c.T, resid_c) / results.nobs
Pinv = np.linalg.inv(np.linalg.cholesky(sig))
w = np.dot(Pinv, resid_c.T)
b1 = (w**3).sum(1)[:, None] / results.nobs
b2 = (w**4).sum(1)[:, None] / results.nobs - 3
lam_skew = results.nobs * np.dot(b1.T, b1) / 6
lam_kurt = results.nobs * np.dot(b2.T, b2) / 24
lam_omni = float(lam_skew + lam_kurt)
omni_dist = stats.chi2(results.neqs * 2)
omni_pvalue = float(omni_dist.sf(lam_omni))
crit_omni = float(omni_dist.ppf(1 - signif))
return NormalityTestResults(lam_omni, crit_omni, omni_pvalue,
results.neqs*2, signif)
[docs]class LagOrderResults:
"""
Results class for choosing a model's lag order.
Parameters
----------
ics : dict
The keys are the strings ``"aic"``, ``"bic"``, ``"hqic"``, and
``"fpe"``. A corresponding value is a list of information criteria for
various numbers of lags.
selected_orders : dict
The keys are the strings ``"aic"``, ``"bic"``, ``"hqic"``, and
``"fpe"``. The corresponding value is an integer specifying the number
of lags chosen according to a given criterion (key).
vecm : bool, default: `False`
`True` indicates that the model is a VECM. In case of a VAR model
this argument must be `False`.
Notes
-----
In case of a VECM the shown lags are lagged differences.
"""
def __init__(self, ics, selected_orders, vecm=False):
self.title = ("VECM" if vecm else "VAR") + " Order Selection"
self.title += " (* highlights the minimums)"
self.ics = ics
self.selected_orders = selected_orders
self.vecm = vecm
self.aic = selected_orders["aic"]
self.bic = selected_orders["bic"]
self.hqic = selected_orders["hqic"]
self.fpe = selected_orders["fpe"]
[docs] def summary(self): # basically copied from (now deleted) print_ic_table()
cols = sorted(self.ics) # ["aic", "bic", "hqic", "fpe"]
str_data = np.array([["%#10.4g" % v for v in self.ics[c]] for c in cols],
dtype=object).T
# mark minimum with an asterisk
for i, col in enumerate(cols):
idx = int(self.selected_orders[col]), i
str_data[idx] += '*'
return SimpleTable(str_data, [col.upper() for col in cols],
lrange(len(str_data)), title=self.title)
def __str__(self):
return "<" + self.__module__ + "." + self.__class__.__name__ \
+ " object. Selected orders are: AIC -> " + str(self.aic) \
+ ", BIC -> " + str(self.bic) \
+ ", FPE -> " + str(self.fpe) \
+ ", HQIC -> " + str(self.hqic) + ">"
# -------------------------------------------------------------------------------
# VARProcess class: for known or unknown VAR process
[docs]class VAR(TimeSeriesModel):
r"""
Fit VAR(p) process and do lag order selection
.. math:: y_t = A_1 y_{t-1} + \ldots + A_p y_{t-p} + u_t
Parameters
----------
endog : array_like
2-d endogenous response variable. The independent variable.
exog : array_like
2-d exogenous variable.
dates : array_like
must match number of rows of endog
References
----------
Lütkepohl (2005) New Introduction to Multiple Time Series Analysis
"""
y = deprecated_alias("y", "endog", remove_version="0.11.0")
def __init__(self, endog, exog=None, dates=None, freq=None,
missing='none'):
super(VAR, self).__init__(endog, exog, dates, freq, missing=missing)
if self.endog.ndim == 1:
raise ValueError("Only gave one variable to VAR")
self.neqs = self.endog.shape[1]
self.n_totobs = len(endog)
[docs] def predict(self, params, start=None, end=None, lags=1, trend='c'):
"""
Returns in-sample predictions or forecasts
"""
params = np.array(params)
if start is None:
start = lags
# Handle start, end
start, end, out_of_sample, prediction_index = (
self._get_prediction_index(start, end))
if end < start:
raise ValueError("end is before start")
if end == start + out_of_sample:
return np.array([])
k_trend = util.get_trendorder(trend)
k = self.neqs
k_ar = lags
predictedvalues = np.zeros((end + 1 - start + out_of_sample, k))
if k_trend != 0:
intercept = params[:k_trend]
predictedvalues += intercept
y = self.endog
x = util.get_var_endog(y, lags, trend=trend, has_constant='raise')
fittedvalues = np.dot(x, params)
fv_start = start - k_ar
pv_end = min(len(predictedvalues), len(fittedvalues) - fv_start)
fv_end = min(len(fittedvalues), end - k_ar + 1)
predictedvalues[:pv_end] = fittedvalues[fv_start:fv_end]
if not out_of_sample:
return predictedvalues
# fit out of sample
y = y[-k_ar:]
coefs = params[k_trend:].reshape((k_ar, k, k)).swapaxes(1, 2)
predictedvalues[pv_end:] = forecast(y, coefs, intercept, out_of_sample)
return predictedvalues
[docs] def fit(self, maxlags=None, method='ols', ic=None, trend='c',
verbose=False):
# todo: this code is only supporting deterministic terms as exog.
# This means that all exog-variables have lag 0. If dealing with
# different exogs is necessary, a `lags_exog`-parameter might make
# sense (e.g. a sequence of ints specifying lags).
# Alternatively, leading zeros for exog-variables with smaller number
# of lags than the maximum number of exog-lags might work.
"""
Fit the VAR model
Parameters
----------
maxlags : {int, None}, default None
Maximum number of lags to check for order selection, defaults to
12 * (nobs/100.)**(1./4), see select_order function
method : {'ols'}
Estimation method to use
ic : {'aic', 'fpe', 'hqic', 'bic', None}
Information criterion to use for VAR order selection.
aic : Akaike
fpe : Final prediction error
hqic : Hannan-Quinn
bic : Bayesian a.k.a. Schwarz
verbose : bool, default False
Print order selection output to the screen
trend : str {"c", "ct", "ctt", "nc", "n"}
"c" - add constant
"ct" - constant and trend
"ctt" - constant, linear and quadratic trend
"n", "nc" - co constant, no trend
Note that these are prepended to the columns of the dataset.
Returns
-------
VARResults
Estimation results
Notes
-----
See Lütkepohl pp. 146-153 for implementation details.
"""
lags = maxlags
if trend not in ['c', 'ct', 'ctt', 'nc', 'n']:
raise ValueError("trend '{}' not supported for VAR".format(trend))
if ic is not None:
selections = self.select_order(maxlags=maxlags)
if not hasattr(selections, ic):
raise ValueError("%s not recognized, must be among %s"
% (ic, sorted(selections)))
lags = getattr(selections, ic)
if verbose:
print(selections)
print('Using %d based on %s criterion' % (lags, ic))
else:
if lags is None:
lags = 1
k_trend = util.get_trendorder(trend)
orig_exog_names = self.exog_names
self.exog_names = util.make_lag_names(self.endog_names, lags, k_trend)
self.nobs = self.n_totobs - lags
# add exog to data.xnames (necessary because the length of xnames also
# determines the allowed size of VARResults.params)
if self.exog is not None:
if orig_exog_names:
x_names_to_add = orig_exog_names
else:
x_names_to_add = [("exog%d" % i)
for i in range(self.exog.shape[1])]
self.data.xnames = (self.data.xnames[:k_trend] +
x_names_to_add +
self.data.xnames[k_trend:])
self.data.cov_names = pd.MultiIndex.from_product((self.data.xnames,
self.data.ynames))
return self._estimate_var(lags, trend=trend)
def _estimate_var(self, lags, offset=0, trend='c'):
"""
lags : int
Lags of the endogenous variable.
offset : int
Periods to drop from beginning-- for order selection so it's an
apples-to-apples comparison
trend : {str, None}
As per above
"""
# have to do this again because select_order does not call fit
self.k_trend = k_trend = util.get_trendorder(trend)
if offset < 0: # pragma: no cover
raise ValueError('offset must be >= 0')
nobs = self.n_totobs - lags - offset
endog = self.endog[offset:]
exog = None if self.exog is None else self.exog[offset:]
z = util.get_var_endog(endog, lags, trend=trend,
has_constant='raise')
if exog is not None:
# TODO: currently only deterministic terms supported (exoglags==0)
# and since exoglags==0, x will be an array of size 0.
x = util.get_var_endog(exog[-nobs:], 0, trend="n",
has_constant="raise")
x_inst = exog[-nobs:]
x = np.column_stack((x, x_inst))
del x_inst # free memory
temp_z = z
z = np.empty((x.shape[0], x.shape[1]+z.shape[1]))
z[:, :self.k_trend] = temp_z[:, :self.k_trend]
z[:, self.k_trend:self.k_trend+x.shape[1]] = x
z[:, self.k_trend+x.shape[1]:] = temp_z[:, self.k_trend:]
del temp_z, x # free memory
# the following modification of z is necessary to get the same results
# as JMulTi for the constant-term-parameter...
for i in range(self.k_trend):
if (np.diff(z[:, i]) == 1).all(): # modify the trend-column
z[:, i] += lags
# make the same adjustment for the quadratic term
if (np.diff(np.sqrt(z[:, i])) == 1).all():
z[:, i] = (np.sqrt(z[:, i]) + lags)**2
y_sample = endog[lags:]
# Lütkepohl p75, about 5x faster than stated formula
params = np.linalg.lstsq(z, y_sample, rcond=1e-15)[0]
resid = y_sample - np.dot(z, params)
# Unbiased estimate of covariance matrix $\Sigma_u$ of the white noise
# process $u$
# equivalent definition
# .. math:: \frac{1}{T - Kp - 1} Y^\prime (I_T - Z (Z^\prime Z)^{-1}
# Z^\prime) Y
# Ref: Lütkepohl p.75
# df_resid right now is T - Kp - 1, which is a suggested correction
avobs = len(y_sample)
if exog is not None:
k_trend += exog.shape[1]
df_resid = avobs - (self.neqs * lags + k_trend)
sse = np.dot(resid.T, resid)
omega = sse / df_resid
varfit = VARResults(endog, z, params, omega, lags,
names=self.endog_names, trend=trend,
dates=self.data.dates, model=self, exog=self.exog)
return VARResultsWrapper(varfit)
[docs] def select_order(self, maxlags=None, trend="c"):
"""
Compute lag order selections based on each of the available information
criteria
Parameters
----------
maxlags : int
if None, defaults to 12 * (nobs/100.)**(1./4)
trend : str {"nc", "c", "ct", "ctt"}
* "nc" - no deterministic terms
* "c" - constant term
* "ct" - constant and linear term
* "ctt" - constant, linear, and quadratic term
Returns
-------
selections : LagOrderResults
"""
ntrend = len(trend) if trend.startswith("c") else 0
max_estimable = (self.n_totobs - self.neqs - ntrend) // (1 + self.neqs)
if maxlags is None:
maxlags = int(round(12*(len(self.endog)/100.)**(1/4.)))
# TODO: This expression shows up in a bunch of places, but
# in some it is `int` and in others `np.ceil`. Also in some
# it multiplies by 4 instead of 12. Let's put these all in
# one place and document when to use which variant.
# Ensure enough obs to estimate model with maxlags
maxlags = min(maxlags, max_estimable)
else:
if maxlags > max_estimable:
raise ValueError(
"maxlags is too large for the number of observations and "
"the number of equations. The largest model cannot be "
"estimated."
)
ics = defaultdict(list)
p_min = 0 if self.exog is not None or trend != "nc" else 1
for p in range(p_min, maxlags + 1):
# exclude some periods to same amount of data used for each lag
# order
result = self._estimate_var(p, offset=maxlags - p, trend=trend)
for k, v in result.info_criteria.items():
ics[k].append(v)
selected_orders = dict((k, np.array(v).argmin() + p_min)
for k, v in ics.items())
return LagOrderResults(ics, selected_orders, vecm=False)
[docs]class VARProcess(object):
"""
Class represents a known VAR(p) process
Parameters
----------
coefs : ndarray (p x k x k)
coefficients for lags of endog, part or params reshaped
coefs_exog : ndarray
parameters for trend and user provided exog
sigma_u : ndarray (k x k)
residual covariance
names : sequence (length k)
_params_info : dict
internal dict to provide information about the composition of `params`,
specifically `k_trend` (trend order) and `k_exog_user` (the number of
exog variables provided by the user).
If it is None, then coefs_exog are assumed to be for the intercept and
trend.
"""
def __init__(self, coefs, coefs_exog, sigma_u, names=None, _params_info=None):
self.k_ar = len(coefs)
self.neqs = coefs.shape[1]
self.coefs = coefs
self.coefs_exog = coefs_exog
# Note reshaping 1-D coefs_exog to 2_D makes unit tests fail
self.sigma_u = sigma_u
self.names = names
if _params_info is None:
_params_info = {}
self.k_exog_user = _params_info.get('k_exog_user', 0)
if self.coefs_exog is not None:
k_ex = self.coefs_exog.shape[0] if self.coefs_exog.ndim != 1 else 1
k_c = k_ex - self.k_exog_user
else:
k_c = 0
self.k_trend = _params_info.get('k_trend', k_c)
# TODO: we need to distinguish exog including trend and exog_user
self.k_exog = self.k_trend + self.k_exog_user
if self.k_trend > 0:
if coefs_exog.ndim == 2:
self.intercept = coefs_exog[:, 0]
else:
self.intercept = coefs_exog
else:
self.intercept = np.zeros(self.neqs)
[docs] def get_eq_index(self, name):
"""Return integer position of requested equation name"""
return util.get_index(self.names, name)
def __str__(self):
output = ('VAR(%d) process for %d-dimensional response y_t'
% (self.k_ar, self.neqs))
output += '\nstable: %s' % self.is_stable()
output += '\nmean: %s' % self.mean()
return output
[docs] def is_stable(self, verbose=False):
"""Determine stability based on model coefficients
Parameters
----------
verbose : bool
Print eigenvalues of the VAR(1) companion
Notes
-----
Checks if det(I - Az) = 0 for any mod(z) <= 1, so all the eigenvalues of
the companion matrix must lie outside the unit circle
"""
return is_stable(self.coefs, verbose=verbose)
[docs] def simulate_var(self, steps=None, offset=None, seed=None):
"""
simulate the VAR(p) process for the desired number of steps
Parameters
----------
steps : None or int
number of observations to simulate, this includes the initial
observations to start the autoregressive process.
If offset is not None, then exog of the model are used if they were
provided in the model
offset : None or ndarray (steps, neqs)
If not None, then offset is added as an observation specific
intercept to the autoregression. If it is None and either trend
(including intercept) or exog were used in the VAR model, then
the linear predictor of those components will be used as offset.
This should have the same number of rows as steps, and the same
number of columns as endogenous variables (neqs).
seed : {None, int}
If seed is not None, then it will be used with for the random
variables generated by numpy.random.
Returns
-------
endog_simulated : nd_array
Endog of the simulated VAR process
"""
steps_ = None
if offset is None:
if self.k_exog_user > 0 or self.k_trend > 1:
# if more than intercept
# endog_lagged contains all regressors, trend, exog_user
# and lagged endog, trimmed initial observations
offset = self.endog_lagged[:,:self.k_exog].dot(
self.coefs_exog.T)
steps_ = self.endog_lagged.shape[0]
else:
offset = self.intercept
else:
steps_ = offset.shape[0]
# default, but over written if exog or offset are used
if steps is None:
if steps_ is None:
steps = 1000
else:
steps = steps_
else:
if steps_ is not None and steps != steps_:
raise ValueError('if exog or offset are used, then steps must'
'be equal to their length or None')
y = util.varsim(self.coefs, offset, self.sigma_u, steps=steps, seed=seed)
return y
[docs] def plotsim(self, steps=None, offset=None, seed=None):
"""
Plot a simulation from the VAR(p) process for the desired number of
steps
"""
y = self.simulate_var(steps=steps, offset=offset, seed=seed)
return plotting.plot_mts(y)
[docs] def intercept_longrun(self):
r"""
Long run intercept of stable VAR process
Lütkepohl eq. 2.1.23
.. math:: \mu = (I - A_1 - \dots - A_p)^{-1} \alpha
where \alpha is the intercept (parameter of the constant)
"""
return np.linalg.solve(self._char_mat, self.intercept)
[docs] def mean(self):
r"""
Long run intercept of stable VAR process
Warning: trend and exog except for intercept are ignored for this.
This might change in future versions.
Lütkepohl eq. 2.1.23
.. math:: \mu = (I - A_1 - \dots - A_p)^{-1} \alpha
where \alpha is the intercept (parameter of the constant)
"""
return self.intercept_longrun()
[docs] def ma_rep(self, maxn=10):
r"""
Compute MA(:math:`\infty`) coefficient matrices
Parameters
----------
maxn : int
Number of coefficient matrices to compute
Returns
-------
coefs : ndarray (maxn x k x k)
"""
return ma_rep(self.coefs, maxn=maxn)
[docs] def orth_ma_rep(self, maxn=10, P=None):
r"""
Compute orthogonalized MA coefficient matrices using P matrix such
that :math:`\Sigma_u = PP^\prime`. P defaults to the Cholesky
decomposition of :math:`\Sigma_u`
Parameters
----------
maxn : int
Number of coefficient matrices to compute
P : ndarray (k x k), optional
Matrix such that Sigma_u = PP', defaults to Cholesky descomp
Returns
-------
coefs : ndarray (maxn x k x k)
"""
return orth_ma_rep(self, maxn, P)
[docs] def long_run_effects(self):
r"""Compute long-run effect of unit impulse
.. math::
\Psi_\infty = \sum_{i=0}^\infty \Phi_i
"""
return np.linalg.inv(self._char_mat)
@cache_readonly
def _chol_sigma_u(self):
return np.linalg.cholesky(self.sigma_u)
@cache_readonly
def _char_mat(self):
"""Characteristic matrix of the VAR"""
return np.eye(self.neqs) - self.coefs.sum(0)
[docs] def acf(self, nlags=None):
"""Compute theoretical autocovariance function
Returns
-------
acf : ndarray (p x k x k)
"""
return var_acf(self.coefs, self.sigma_u, nlags=nlags)
[docs] def acorr(self, nlags=None):
"""
Autocorrelation function
Parameters
----------
nlags : int or None
The number of lags to include in the autocovariance function. The
default is the number of lags included in the model.
Returns
-------
acorr : ndarray
Autocorrelation and cross correlations (nlags, neqs, neqs)
"""
return util.acf_to_acorr(self.acf(nlags=nlags))
[docs] def plot_acorr(self, nlags=10, linewidth=8):
"""Plot theoretical autocorrelation function"""
fig = plotting.plot_full_acorr(self.acorr(nlags=nlags),
linewidth=linewidth)
return fig
[docs] def forecast(self, y, steps, exog_future=None):
"""Produce linear minimum MSE forecasts for desired number of steps
ahead, using prior values y
Parameters
----------
y : ndarray (p x k)
steps : int
Returns
-------
forecasts : ndarray (steps x neqs)
Notes
-----
Lütkepohl pp 37-38
"""
if self.exog is None and exog_future is not None:
raise ValueError("No exog in model, so no exog_future supported "
"in forecast method.")
if self.exog is not None and exog_future is None:
raise ValueError("Please provide an exog_future argument to "
"the forecast method.")
exog_future = array_like(exog_future, "exog_future", optional=True, ndim=2)
if exog_future is not None:
if exog_future.shape[0] != steps:
err_msg = f"""\
exog_future only has {exog_future.shape[0]} observations. It must have \
steps ({steps}) observations.
"""
raise ValueError(err_msg)
trend_coefs = None if self.coefs_exog.size == 0 else self.coefs_exog.T
exogs = []
if self.trend.startswith("c"): # constant term
exogs.append(np.ones(steps))
exog_lin_trend = np.arange(self.n_totobs + 1,
self.n_totobs + 1 + steps)
if "t" in self.trend:
exogs.append(exog_lin_trend)
if "tt" in self.trend:
exogs.append(exog_lin_trend**2)
if exog_future is not None:
exogs.append(exog_future)
if not exogs:
exog_future = None
else:
exog_future = np.column_stack(exogs)
return forecast(y, self.coefs, trend_coefs, steps, exog_future)
# TODO: use `mse` module-level function?
[docs] def mse(self, steps):
r"""
Compute theoretical forecast error variance matrices
Parameters
----------
steps : int
Number of steps ahead
Notes
-----
.. math:: \mathrm{MSE}(h) = \sum_{i=0}^{h-1} \Phi \Sigma_u \Phi^T
Returns
-------
forc_covs : ndarray (steps x neqs x neqs)
"""
ma_coefs = self.ma_rep(steps)
k = len(self.sigma_u)
forc_covs = np.zeros((steps, k, k))
prior = np.zeros((k, k))
for h in range(steps):
# Sigma(h) = Sigma(h-1) + Phi Sig_u Phi'
phi = ma_coefs[h]
var = phi @ self.sigma_u @ phi.T
forc_covs[h] = prior = prior + var
return forc_covs
forecast_cov = mse
def _forecast_vars(self, steps):
covs = self.forecast_cov(steps)
# Take diagonal for each cov
inds = np.arange(self.neqs)
return covs[:, inds, inds]
[docs] def forecast_interval(self, y, steps, alpha=0.05, exog_future=None):
"""
Construct forecast interval estimates assuming the y are Gaussian
Parameters
----------
y : {ndarray, None}
The initial values to use for the forecasts. If None,
the last k_ar values of the original endogenous variables are
used.
steps : int
Number of steps ahead to forecast
alpha : float, optional
The significance level for the confidence intervals.
exog_future : ndarray, optional
Forecast values of the exogenous variables. Should include
constant, trend, etc. as needed, including extrapolating out
of sample.
Returns
-------
point : ndarray
Mean value of forecast
lower : ndarray
Lower bound of confidence interval
upper : ndarray
Upper bound of confidence interval
Notes
-----
Lütkepohl pp. 39-40
"""
if not 0 < alpha < 1:
raise ValueError('alpha must be between 0 and 1')
q = util.norm_signif_level(alpha)
point_forecast = self.forecast(y, steps, exog_future=exog_future)
sigma = np.sqrt(self._forecast_vars(steps))
forc_lower = point_forecast - q * sigma
forc_upper = point_forecast + q * sigma
return point_forecast, forc_lower, forc_upper
[docs] def to_vecm(self):
"""to_vecm"""
k = self.coefs.shape[1]
p = self.coefs.shape[0]
A = self.coefs
pi = -(np.identity(k) - np.sum(A, 0))
gamma = np.zeros((p-1, k, k))
for i in range(p-1):
gamma[i] = -(np.sum(A[i+1:], 0))
gamma = np.concatenate(gamma, 1)
return {"Gamma": gamma, "Pi": pi}
# -------------------------------------------------------------------------------
# VARResults class
[docs]class VARResults(VARProcess):
"""Estimate VAR(p) process with fixed number of lags
Parameters
----------
endog : ndarray
endog_lagged : ndarray
params : ndarray
sigma_u : ndarray
lag_order : int
model : VAR model instance
trend : str {'nc', 'c', 'ct'}
names : array_like
List of names of the endogenous variables in order of appearance in `endog`.
dates
exog : ndarray
Attributes
----------
coefs : ndarray (p x K x K)
Estimated A_i matrices, A_i = coefs[i-1]
dates
endog
endog_lagged
k_ar : int
Order of VAR process
k_trend : int
model
names
neqs : int
Number of variables (equations)
nobs : int
n_totobs : int
params : ndarray (Kp + 1) x K
A_i matrices and intercept in stacked form [int A_1 ... A_p]
names : list
variables names
resid
sigma_u : ndarray (K x K)
Estimate of white noise process variance Var[u_t]
tvalues
y :
ys_lagged
"""
_model_type = 'VAR'
y = deprecated_alias("y", "endog", remove_version="0.11.0")
ys_lagged = deprecated_alias("ys_lagged", "endog_lagged",
remove_version="0.11.0")
def __init__(self, endog, endog_lagged, params, sigma_u, lag_order,
model=None, trend='c', names=None, dates=None, exog=None):
self.model = model
self.endog = endog
self.endog_lagged = endog_lagged
self.dates = dates
self.n_totobs, neqs = self.endog.shape
self.nobs = self.n_totobs - lag_order
self.trend = trend
k_trend = util.get_trendorder(trend)
self.exog_names = util.make_lag_names(names, lag_order, k_trend,
model.data.orig_exog)
self.params = params
self.exog = exog
# Initialize VARProcess parent class
# construct coefficient matrices
# Each matrix needs to be transposed
endog_start = k_trend
if exog is not None:
k_exog_user = exog.shape[1]
endog_start += k_exog_user
else:
k_exog_user = 0
reshaped = self.params[endog_start:]
reshaped = reshaped.reshape((lag_order, neqs, neqs))
# Need to transpose each coefficient matrix
coefs = reshaped.swapaxes(1, 2).copy()
self.coefs_exog = params[:endog_start].T
self.k_exog = self.coefs_exog.shape[1]
self.k_exog_user = k_exog_user
# maybe change to params class, distinguish exog_all versus exog_user
# see issue #4535
_params_info = {'k_trend': k_trend,
'k_exog_user': k_exog_user,
'k_ar': lag_order}
super(VARResults, self).__init__(coefs, self.coefs_exog, sigma_u,
names=names,
_params_info=_params_info)
[docs] def plot(self):
"""Plot input time series"""
return plotting.plot_mts(self.endog, names=self.names,
index=self.dates)
@property
def df_model(self):
"""
Number of estimated parameters, including the intercept / trends
"""
return self.neqs * self.k_ar + self.k_exog
@property
def df_resid(self):
"""Number of observations minus number of estimated parameters"""
return self.nobs - self.df_model
@cache_readonly
def fittedvalues(self):
"""
The predicted insample values of the response variables of the model.
"""
return np.dot(self.endog_lagged, self.params)
@cache_readonly
def resid(self):
"""
Residuals of response variable resulting from estimated coefficients
"""
return self.endog[self.k_ar:] - self.fittedvalues
[docs] def sample_acov(self, nlags=1):
"""Sample acov"""
return _compute_acov(self.endog[self.k_ar:], nlags=nlags)
[docs] def sample_acorr(self, nlags=1):
"""Sample acorr"""
acovs = self.sample_acov(nlags=nlags)
return _acovs_to_acorrs(acovs)
[docs] def plot_sample_acorr(self, nlags=10, linewidth=8):
"""
Plot sample autocorrelation function
Parameters
----------
nlags : int
The number of lags to use in compute the autocorrelation. Does
not count the zero lag, which will be returned.
linewidth : int
The linewidth for the plots.
Returns
-------
Figure
The figure that contains the plot axes.
"""
fig = plotting.plot_full_acorr(self.sample_acorr(nlags=nlags),
linewidth=linewidth)
return fig
[docs] def resid_acov(self, nlags=1):
"""
Compute centered sample autocovariance (including lag 0)
Parameters
----------
nlags : int
Returns
-------
"""
return _compute_acov(self.resid, nlags=nlags)
[docs] def resid_acorr(self, nlags=1):
"""
Compute sample autocorrelation (including lag 0)
Parameters
----------
nlags : int
Returns
-------
"""
acovs = self.resid_acov(nlags=nlags)
return _acovs_to_acorrs(acovs)
@cache_readonly
def resid_corr(self):
"""
Centered residual correlation matrix
"""
return self.resid_acorr(0)[0]
@cache_readonly
def sigma_u_mle(self):
"""(Biased) maximum likelihood estimate of noise process covariance
"""
return self.sigma_u * self.df_resid / self.nobs
[docs] def cov_params(self):
"""Estimated variance-covariance of model coefficients
Notes
-----
Covariance of vec(B), where B is the matrix
[params_for_deterministic_terms, A_1, ..., A_p] with the shape
(K x (Kp + number_of_deterministic_terms))
Adjusted to be an unbiased estimator
Ref: Lütkepohl p.74-75
"""
z = self.endog_lagged
return np.kron(np.linalg.inv(z.T @ z), self.sigma_u)
[docs] def cov_ybar(self):
r"""Asymptotically consistent estimate of covariance of the sample mean
.. math::
\sqrt(T) (\bar{y} - \mu) \rightarrow {\cal N}(0, \Sigma_{\bar{y}})\\
\Sigma_{\bar{y}} = B \Sigma_u B^\prime, \text{where } B = (I_K - A_1
- \cdots - A_p)^{-1}
Notes
-----
Lütkepohl Proposition 3.3
"""
Ainv = np.linalg.inv(np.eye(self.neqs) - self.coefs.sum(0))
return Ainv @ self.sigma_u @ Ainv.T
# ------------------------------------------------------------
# Estimation-related things
@cache_readonly
def _zz(self):
# Z'Z
return np.dot(self.endog_lagged.T, self.endog_lagged)
@property
def _cov_alpha(self):
"""
Estimated covariance matrix of model coefficients w/o exog
"""
# drop exog
kn = self.k_exog * self.neqs
return self.cov_params()[kn:, kn:]
@cache_readonly
def _cov_sigma(self):
"""
Estimated covariance matrix of vech(sigma_u)
"""
D_K = tsa.duplication_matrix(self.neqs)
D_Kinv = np.linalg.pinv(D_K)
sigxsig = np.kron(self.sigma_u, self.sigma_u)
return 2 * D_Kinv @ sigxsig @ D_Kinv.T
@cache_readonly
def llf(self):
"Compute VAR(p) loglikelihood"
return var_loglike(self.resid, self.sigma_u_mle, self.nobs)
@cache_readonly
def stderr(self):
"""Standard errors of coefficients, reshaped to match in size
"""
stderr = np.sqrt(np.diag(self.cov_params()))
return stderr.reshape((self.df_model, self.neqs), order='C')
bse = stderr # statsmodels interface?
@cache_readonly
def stderr_endog_lagged(self):
"""Stderr_endog_lagged"""
start = self.k_exog
return self.stderr[start:]
@cache_readonly
def stderr_dt(self):
"""Stderr_dt"""
end = self.k_exog
return self.stderr[:end]
@cache_readonly
def tvalues(self):
"""Compute t-statistics. Use Student-t(T - Kp - 1) = t(df_resid) to test
significance.
"""
return self.params / self.stderr
@cache_readonly
def tvalues_endog_lagged(self):
"""tvalues_endog_lagged"""
start = self.k_exog
return self.tvalues[start:]
@cache_readonly
def tvalues_dt(self):
"""tvalues_dt"""
end = self.k_exog
return self.tvalues[:end]
@cache_readonly
def pvalues(self):
"""Two-sided p-values for model coefficients from Student t-distribution
"""
# return stats.t.sf(np.abs(self.tvalues), self.df_resid)*2
return 2 * stats.norm.sf(np.abs(self.tvalues))
@cache_readonly
def pvalues_endog_lagged(self):
"""pvalues_endog_laggd"""
start = self.k_exog
return self.pvalues[start:]
@cache_readonly
def pvalues_dt(self):
"""pvalues_dt"""
end = self.k_exog
return self.pvalues[:end]
# todo: --------------------------------------------------------------------
[docs] def plot_forecast(self, steps, alpha=0.05, plot_stderr=True):
"""
Plot forecast
"""
mid, lower, upper = self.forecast_interval(self.endog[-self.k_ar:],
steps,
alpha=alpha)
fig = plotting.plot_var_forc(self.endog, mid, lower, upper,
names=self.names, plot_stderr=plot_stderr)
return fig
# Forecast error covariance functions
[docs] def forecast_cov(self, steps=1, method='mse'):
r"""Compute forecast covariance matrices for desired number of steps
Parameters
----------
steps : int
Notes
-----
.. math:: \Sigma_{\hat y}(h) = \Sigma_y(h) + \Omega(h) / T
Ref: Lütkepohl pp. 96-97
Returns
-------
covs : ndarray (steps x k x k)
"""
fc_cov = self.mse(steps)
if method == 'mse':
pass
elif method == 'auto':
if self.k_exog == 1 and self.k_trend < 2:
# currently only supported if no exog and trend in ['nc', 'c']
fc_cov += self._omega_forc_cov(steps) / self.nobs
import warnings
warnings.warn('forecast cov takes parameter uncertainty into'
'account', OutputWarning)
else:
raise ValueError("method has to be either 'mse' or 'auto'")
return fc_cov
# Monte Carlo irf standard errors
[docs] @deprecate_kwarg('T', 'steps')
def irf_errband_mc(self, orth=False, repl=1000, steps=10,
signif=0.05, seed=None, burn=100, cum=False):
"""
Compute Monte Carlo integrated error bands assuming normally
distributed for impulse response functions
Parameters
----------
orth : bool, default False
Compute orthogonalized impulse response error bands
repl : int
number of Monte Carlo replications to perform
steps : int, default 10
number of impulse response periods
signif : float (0 < signif <1)
Significance level for error bars, defaults to 95% CI
seed : int
np.random.seed for replications
burn : int
number of initial observations to discard for simulation
cum : bool, default False
produce cumulative irf error bands
Notes
-----
Lütkepohl (2005) Appendix D
Returns
-------
Tuple of lower and upper arrays of ma_rep monte carlo standard errors
"""
ma_coll = self.irf_resim(orth=orth, repl=repl, steps=steps,
seed=seed, burn=burn, cum=cum)
ma_sort = np.sort(ma_coll, axis=0) # sort to get quantiles
# python 2: round returns float
low_idx = int(round(signif / 2 * repl) - 1)
upp_idx = int(round((1 - signif / 2) * repl) - 1)
lower = ma_sort[low_idx, :, :, :]
upper = ma_sort[upp_idx, :, :, :]
return lower, upper
[docs] @deprecate_kwarg('T', 'steps')
def irf_resim(self, orth=False, repl=1000, steps=10,
seed=None, burn=100, cum=False):
"""
Simulates impulse response function, returning an array of simulations.
Used for Sims-Zha error band calculation.
Parameters
----------
orth : bool, default False
Compute orthogonalized impulse response error bands
repl : int
number of Monte Carlo replications to perform
steps : int, default 10
number of impulse response periods
signif : float (0 < signif <1)
Significance level for error bars, defaults to 95% CI
seed : int
np.random.seed for replications
burn : int
number of initial observations to discard for simulation
cum : bool, default False
produce cumulative irf error bands
Notes
-----
.. [*] Sims, Christoper A., and Tao Zha. 1999. "Error Bands for Impulse
Response." Econometrica 67: 1113-1155.
Returns
-------
Array of simulated impulse response functions
"""
neqs = self.neqs
k_ar = self.k_ar
coefs = self.coefs
sigma_u = self.sigma_u
intercept = self.intercept
nobs = self.nobs
nobs_original = nobs + k_ar
ma_coll = np.zeros((repl, steps + 1, neqs, neqs))
def fill_coll(sim):
ret = VAR(sim, exog=self.exog).fit(maxlags=k_ar, trend=self.trend)
ret = ret.orth_ma_rep(maxn=steps) if orth else ret.ma_rep(maxn=steps)
return ret.cumsum(axis=0) if cum else ret
for i in range(repl):
# discard first burn to eliminate correct for starting bias
sim = util.varsim(coefs, intercept, sigma_u,
seed=seed, steps=nobs_original+burn)
sim = sim[burn:]
ma_coll[i, :, :, :] = fill_coll(sim)
return ma_coll
def _omega_forc_cov(self, steps):
# Approximate MSE matrix \Omega(h) as defined in Lut p97
G = self._zz
Ginv = np.linalg.inv(G)
# memoize powers of B for speedup
# TODO: see if can memoize better
# TODO: much lower-hanging fruit in caching `np.trace` below.
B = self._bmat_forc_cov()
_B = {}
def bpow(i):
if i not in _B:
_B[i] = np.linalg.matrix_power(B, i)
return _B[i]
phis = self.ma_rep(steps)
sig_u = self.sigma_u
omegas = np.zeros((steps, self.neqs, self.neqs))
for h in range(1, steps + 1):
if h == 1:
omegas[h-1] = self.df_model * self.sigma_u
continue
om = omegas[h-1]
for i in range(h):
for j in range(h):
Bi = bpow(h - 1 - i)
Bj = bpow(h - 1 - j)
mult = np.trace(Bi.T @ Ginv @ Bj @ G)
om += mult * phis[i] @ sig_u @ phis[j].T
omegas[h-1] = om
return omegas
def _bmat_forc_cov(self):
# B as defined on p. 96 of Lut
upper = np.zeros((self.k_exog, self.df_model))
upper[:, :self.k_exog] = np.eye(self.k_exog)
lower_dim = self.neqs * (self.k_ar - 1)
eye = np.eye(lower_dim)
lower = np.column_stack((np.zeros((lower_dim, self.k_exog)), eye,
np.zeros((lower_dim, self.neqs))))
return np.vstack((upper, self.params.T, lower))
[docs] def summary(self):
"""Compute console output summary of estimates
Returns
-------
summary : VARSummary
"""
return VARSummary(self)
[docs] def irf(self, periods=10, var_decomp=None, var_order=None):
"""Analyze impulse responses to shocks in system
Parameters
----------
periods : int
var_decomp : ndarray (k x k), lower triangular
Must satisfy Omega = P P', where P is the passed matrix. Defaults to
Cholesky decomposition of Omega
var_order : sequence
Alternate variable order for Cholesky decomposition
Returns
-------
irf : IRAnalysis
"""
if var_order is not None:
raise NotImplementedError('alternate variable order not implemented'
' (yet)')
return IRAnalysis(self, P=var_decomp, periods=periods)
[docs] def fevd(self, periods=10, var_decomp=None):
"""
Compute forecast error variance decomposition ("fevd")
Returns
-------
fevd : FEVD instance
"""
return FEVD(self, P=var_decomp, periods=periods)
[docs] def reorder(self, order):
"""Reorder variables for structural specification
"""
if len(order) != len(self.params[0, :]):
raise ValueError("Reorder specification length should match "
"number of endogenous variables")
# This converts order to list of integers if given as strings
if isinstance(order[0], str):
order_new = []
for i, nam in enumerate(order):
order_new.append(self.names.index(order[i]))
order = order_new
return _reordered(self, order)
# --------------------------------------------------------------------------
# VAR Diagnostics: Granger-causality, whiteness of residuals, normality, etc
[docs] def test_causality(self, caused, causing=None, kind='f', signif=0.05):
"""
Test Granger causality
Parameters
----------
caused : int or str or sequence of int or str
If int or str, test whether the variable specified via this index
(int) or name (str) is Granger-caused by the variable(s) specified
by `causing`.
If a sequence of int or str, test whether the corresponding
variables are Granger-caused by the variable(s) specified
by `causing`.
causing : int or str or sequence of int or str or None, default: None
If int or str, test whether the variable specified via this index
(int) or name (str) is Granger-causing the variable(s) specified by
`caused`.
If a sequence of int or str, test whether the corresponding
variables are Granger-causing the variable(s) specified by
`caused`.
If None, `causing` is assumed to be the complement of `caused`.
kind : {'f', 'wald'}
Perform F-test or Wald (chi-sq) test
signif : float, default 5%
Significance level for computing critical values for test,
defaulting to standard 0.05 level
Notes
-----
Null hypothesis is that there is no Granger-causality for the indicated
variables. The degrees of freedom in the F-test are based on the
number of variables in the VAR system, that is, degrees of freedom
are equal to the number of equations in the VAR times degree of freedom
of a single equation.
Test for Granger-causality as described in chapter 7.6.3 of [1]_.
Test H0: "`causing` does not Granger-cause the remaining variables of
the system" against H1: "`causing` is Granger-causal for the
remaining variables".
Returns
-------
results : CausalityTestResults
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
if not (0 < signif < 1):
raise ValueError("signif has to be between 0 and 1")
allowed_types = (str, int)
if isinstance(caused, allowed_types):
caused = [caused]
if not all(isinstance(c, allowed_types) for c in caused):
raise TypeError("caused has to be of type string or int (or a "
"sequence of these types).")
caused = [self.names[c] if type(c) == int else c for c in caused]
caused_ind = [util.get_index(self.names, c) for c in caused]
if causing is not None:
if isinstance(causing, allowed_types):
causing = [causing]
if not all(isinstance(c, allowed_types) for c in causing):
raise TypeError("causing has to be of type string or int (or "
"a sequence of these types) or None.")
causing = [self.names[c] if type(c) == int else c for c in causing]
causing_ind = [util.get_index(self.names, c) for c in causing]
if causing is None:
causing_ind = [i for i in range(self.neqs) if i not in caused_ind]
causing = [self.names[c] for c in caused_ind]
k, p = self.neqs, self.k_ar
if p == 0:
err = "Cannot test Granger Causality in a model with 0 lags."
raise RuntimeError(err)
# number of restrictions
num_restr = len(causing) * len(caused) * p
num_det_terms = self.k_exog
# Make restriction matrix
C = np.zeros((num_restr, k * num_det_terms + k**2 * p), dtype=float)
cols_det = k * num_det_terms
row = 0
for j in range(p):
for ing_ind in causing_ind:
for ed_ind in caused_ind:
C[row, cols_det + ed_ind + k * ing_ind + k**2 * j] = 1
row += 1
# Lütkepohl 3.6.5
Cb = np.dot(C, vec(self.params.T))
middle = np.linalg.inv(C @ self.cov_params() @ C.T)
# wald statistic
lam_wald = statistic = Cb @ middle @ Cb
if kind.lower() == 'wald':
df = num_restr
dist = stats.chi2(df)
elif kind.lower() == 'f':
statistic = lam_wald / num_restr
df = (num_restr, k * self.df_resid)
dist = stats.f(*df)
else:
raise ValueError('kind %s not recognized' % kind)
pvalue = dist.sf(statistic)
crit_value = dist.ppf(1 - signif)
return CausalityTestResults(causing, caused, statistic,
crit_value, pvalue, df, signif,
test="granger", method=kind)
[docs] def test_inst_causality(self, causing, signif=0.05):
"""
Test for instantaneous causality
Parameters
----------
causing :
If int or str, test whether the corresponding variable is causing
the variable(s) specified in caused.
If sequence of int or str, test whether the corresponding variables
are causing the variable(s) specified in caused.
signif : float between 0 and 1, default 5 %
Significance level for computing critical values for test,
defaulting to standard 0.05 level
verbose : bool
If True, print a table with the results.
Returns
-------
results : dict
A dict holding the test's results. The dict's keys are:
"statistic" : float
The calculated test statistic.
"crit_value" : float
The critical value of the Chi^2-distribution.
"pvalue" : float
The p-value corresponding to the test statistic.
"df" : float
The degrees of freedom of the Chi^2-distribution.
"conclusion" : str {"reject", "fail to reject"}
Whether H0 can be rejected or not.
"signif" : float
Significance level
Notes
-----
Test for instantaneous causality as described in chapters 3.6.3 and
7.6.4 of [1]_.
Test H0: "No instantaneous causality between caused and causing"
against H1: "Instantaneous causality between caused and causing
exists".
Instantaneous causality is a symmetric relation (i.e. if causing is
"instantaneously causing" caused, then also caused is "instantaneously
causing" causing), thus the naming of the parameters (which is chosen
to be in accordance with test_granger_causality()) may be misleading.
This method is not returning the same result as JMulTi. This is because
the test is based on a VAR(k_ar) model in statsmodels (in accordance to
pp. 104, 320-321 in [1]_) whereas JMulTi seems to be using a
VAR(k_ar+1) model.
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
if not (0 < signif < 1):
raise ValueError("signif has to be between 0 and 1")
allowed_types = (str, int)
if isinstance(causing, allowed_types):
causing = [causing]
if not all(isinstance(c, allowed_types) for c in causing):
raise TypeError("causing has to be of type string or int (or a " +
"a sequence of these types).")
causing = [self.names[c] if type(c) == int else c for c in causing]
causing_ind = [util.get_index(self.names, c) for c in causing]
caused_ind = [i for i in range(self.neqs) if i not in causing_ind]
caused = [self.names[c] for c in caused_ind]
# Note: JMulTi seems to be using k_ar+1 instead of k_ar
k, t, p = self.neqs, self.nobs, self.k_ar
num_restr = len(causing) * len(caused) # called N in Lütkepohl
sigma_u = self.sigma_u
vech_sigma_u = util.vech(sigma_u)
sig_mask = np.zeros(sigma_u.shape)
# set =1 twice to ensure, that all the ones needed are below the main
# diagonal:
sig_mask[causing_ind, caused_ind] = 1
sig_mask[caused_ind, causing_ind] = 1
vech_sig_mask = util.vech(sig_mask)
inds = np.nonzero(vech_sig_mask)[0]
# Make restriction matrix
C = np.zeros((num_restr, len(vech_sigma_u)), dtype=float)
for row in range(num_restr):
C[row, inds[row]] = 1
Cs = np.dot(C, vech_sigma_u)
d = np.linalg.pinv(duplication_matrix(k))
Cd = np.dot(C, d)
middle = np.linalg.inv(Cd @ np.kron(sigma_u, sigma_u) @ Cd.T) / 2
wald_statistic = t * (Cs.T @ middle @ Cs)
df = num_restr
dist = stats.chi2(df)
pvalue = dist.sf(wald_statistic)
crit_value = dist.ppf(1 - signif)
return CausalityTestResults(causing, caused, wald_statistic,
crit_value, pvalue, df, signif,
test="inst", method="wald")
[docs] def test_whiteness(self, nlags=10, signif=0.05, adjusted=False):
"""
Residual whiteness tests using Portmanteau test
Parameters
----------
nlags : int > 0
The number of lags tested must be larger than the number of lags
included in the VAR model.
signif : float, between 0 and 1
The significance level of the test.
adjusted : bool, default False
Flag indicating to apply small-sample adjustments.
Returns
-------
WhitenessTestResults
The test results.
Notes
-----
Test the whiteness of the residuals using the Portmanteau test as
described in [1]_, chapter 4.4.3.
References
----------
.. [1] Lütkepohl, H. 2005. *New Introduction to Multiple Time Series Analysis*. Springer.
"""
if nlags - self.k_ar <= 0:
raise ValueError("The whiteness test can only be used when nlags "
"is larger than the number of lags included in "
f"the model ({self.k_ar}).")
statistic = 0
u = np.asarray(self.resid)
acov_list = _compute_acov(u, nlags)
cov0_inv = np.linalg.inv(acov_list[0])
for t in range(1, nlags+1):
ct = acov_list[t]
to_add = np.trace(ct.T @ cov0_inv @ ct @ cov0_inv)
if adjusted:
to_add /= (self.nobs - t)
statistic += to_add
statistic *= self.nobs**2 if adjusted else self.nobs
df = self.neqs**2 * (nlags - self.k_ar)
dist = stats.chi2(df)
pvalue = dist.sf(statistic)
crit_value = dist.ppf(1 - signif)
return WhitenessTestResults(statistic, crit_value, pvalue, df, signif,
nlags, adjusted)
[docs] def plot_acorr(self, nlags=10, resid=True, linewidth=8):
r"""
Plot autocorrelation of sample (endog) or residuals
Sample (Y) or Residual autocorrelations are plotted together with the
standard :math:`2 / \sqrt{T}` bounds.
Parameters
----------
nlags : int
number of lags to display (excluding 0)
resid : bool
If True, then the autocorrelation of the residuals is plotted
If False, then the autocorrelation of endog is plotted.
linewidth : int
width of vertical bars
Returns
-------
Figure
Figure instance containing the plot.
"""
if resid:
acorrs = self.resid_acorr(nlags)
else:
acorrs = self.sample_acorr(nlags)
bound = 2 / np.sqrt(self.nobs)
fig = plotting.plot_full_acorr(acorrs[1:],
xlabel=np.arange(1, nlags+1),
err_bound=bound,
linewidth=linewidth)
fig.suptitle(r"ACF plots for residuals with $2 / \sqrt{T}$ bounds ")
return fig
[docs] def test_normality(self, signif=0.05):
"""
Test assumption of normal-distributed errors using Jarque-Bera-style
omnibus Chi^2 test.
Parameters
----------
signif : float
Test significance level.
Returns
-------
result : NormalityTestResults
Notes
-----
H0 (null) : data are generated by a Gaussian-distributed process
"""
return test_normality(self, signif=signif)
@cache_readonly
def detomega(self):
r"""
Return determinant of white noise covariance with degrees of freedom
correction:
.. math::
\hat \Omega = \frac{T}{T - Kp - 1} \hat \Omega_{\mathrm{MLE}}
"""
return np.linalg.det(self.sigma_u)
@cache_readonly
def info_criteria(self):
"information criteria for lagorder selection"
nobs = self.nobs
neqs = self.neqs
lag_order = self.k_ar
free_params = lag_order * neqs ** 2 + neqs * self.k_exog
ld = logdet_symm(self.sigma_u_mle)
# See Lütkepohl pp. 146-150
aic = ld + (2. / nobs) * free_params
bic = ld + (np.log(nobs) / nobs) * free_params
hqic = ld + (2. * np.log(np.log(nobs)) / nobs) * free_params
fpe = ((nobs + self.df_model) / self.df_resid) ** neqs * np.exp(ld)
return {
'aic': aic,
'bic': bic,
'hqic': hqic,
'fpe': fpe
}
@property
def aic(self):
"""Akaike information criterion"""
return self.info_criteria['aic']
@property
def fpe(self):
"""Final Prediction Error (FPE)
Lütkepohl p. 147, see info_criteria
"""
return self.info_criteria['fpe']
@property
def hqic(self):
"""Hannan-Quinn criterion"""
return self.info_criteria['hqic']
@property
def bic(self):
"""Bayesian a.k.a. Schwarz info criterion"""
return self.info_criteria['bic']
@cache_readonly
def roots(self):
"""
The roots of the VAR process are the solution to
(I - coefs[0]*z - coefs[1]*z**2 ... - coefs[p-1]*z**k_ar) = 0.
Note that the inverse roots are returned, and stability requires that
the roots lie outside the unit circle.
"""
neqs = self.neqs
k_ar = self.k_ar
p = neqs * k_ar
arr = np.zeros((p, p))
arr[:neqs, :] = np.column_stack(self.coefs)
arr[neqs:, :-neqs] = np.eye(p-neqs)
roots = np.linalg.eig(arr)[0]**-1
idx = np.argsort(np.abs(roots))[::-1] # sort by reverse modulus
return roots[idx]
class VARResultsWrapper(wrap.ResultsWrapper):
_attrs = {'bse': 'columns_eq', 'cov_params': 'cov',
'params': 'columns_eq', 'pvalues': 'columns_eq',
'tvalues': 'columns_eq', 'sigma_u': 'cov_eq',
'sigma_u_mle': 'cov_eq',
'stderr': 'columns_eq'}
_wrap_attrs = wrap.union_dicts(TimeSeriesResultsWrapper._wrap_attrs,
_attrs)
_methods = {'conf_int': 'multivariate_confint'}
_wrap_methods = wrap.union_dicts(TimeSeriesResultsWrapper._wrap_methods,
_methods)
wrap.populate_wrapper(VARResultsWrapper, VARResults) # noqa:E305
[docs]class FEVD(object):
"""
Compute and plot Forecast error variance decomposition and asymptotic
standard errors
"""
def __init__(self, model, P=None, periods=None):
self.periods = periods
self.model = model
self.neqs = model.neqs
self.names = model.model.endog_names
self.irfobj = model.irf(var_decomp=P, periods=periods)
self.orth_irfs = self.irfobj.orth_irfs
# cumulative impulse responses
irfs = (self.orth_irfs[:periods] ** 2).cumsum(axis=0)
rng = lrange(self.neqs)
mse = self.model.mse(periods)[:, rng, rng]
# lag x equation x component
fevd = np.empty_like(irfs)
for i in range(periods):
fevd[i] = (irfs[i].T / mse[i]).T
# switch to equation x lag x component
self.decomp = fevd.swapaxes(0, 1)
[docs] def summary(self):
buf = StringIO()
rng = lrange(self.periods)
for i in range(self.neqs):
ppm = output.pprint_matrix(self.decomp[i], rng, self.names)
buf.write('FEVD for %s\n' % self.names[i])
buf.write(ppm + '\n')
print(buf.getvalue())
[docs] def cov(self):
"""Compute asymptotic standard errors
Returns
-------
"""
raise NotImplementedError
[docs] def plot(self, periods=None, figsize=(10, 10), **plot_kwds):
"""Plot graphical display of FEVD
Parameters
----------
periods : int, default None
Defaults to number originally specified. Can be at most that number
"""
import matplotlib.pyplot as plt
k = self.neqs
periods = periods or self.periods
fig, axes = plt.subplots(nrows=k, figsize=figsize)
fig.suptitle('Forecast error variance decomposition (FEVD)')
colors = [str(c) for c in np.arange(k, dtype=float) / k]
ticks = np.arange(periods)
limits = self.decomp.cumsum(2)
for i in range(k):
ax = axes[i]
this_limits = limits[i].T
handles = []
for j in range(k):
lower = this_limits[j - 1] if j > 0 else 0
upper = this_limits[j]
handle = ax.bar(ticks, upper - lower, bottom=lower,
color=colors[j], label=self.names[j],
**plot_kwds)
handles.append(handle)
ax.set_title(self.names[i])
# just use the last axis to get handles for plotting
handles, labels = ax.get_legend_handles_labels()
fig.legend(handles, labels, loc='upper right')
plotting.adjust_subplots(right=0.85)
return fig
# -------------------------------------------------------------------------------
def _compute_acov(x, nlags=1):
x = x - x.mean(0)
result = []
for lag in range(nlags + 1):
if lag > 0:
r = np.dot(x[lag:].T, x[:-lag])
else:
r = np.dot(x.T, x)
result.append(r)
return np.array(result) / len(x)
def _acovs_to_acorrs(acovs):
sd = np.sqrt(np.diag(acovs[0]))
return acovs / np.outer(sd, sd)
if __name__ == '__main__':
import statsmodels.tools.data as data_util
from statsmodels.tsa.vector_ar.util import parse_lutkepohl_data
np.set_printoptions(linewidth=140, precision=5)
sdata, dates = parse_lutkepohl_data('data/%s.dat' % 'e1')
names = sdata.dtype.names
data = data_util.struct_to_ndarray(sdata)
adj_data = np.diff(np.log(data), axis=0)
# est = VAR(adj_data, p=2, dates=dates[1:], names=names)
model = VAR(adj_data[:-16], dates=dates[1:-16], names=names)
# model = VAR(adj_data[:-16], dates=dates[1:-16], names=names)
est = model.fit(maxlags=2)
irf = est.irf()
y = est.endog[-2:]
"""
# irf.plot_irf()
# i = 2; j = 1
# cv = irf.cum_effect_cov(orth=True)
# print np.sqrt(cv[:, j * 3 + i, j * 3 + i]) / 1e-2
# data = np.genfromtxt('Canada.csv', delimiter=',', names=True)
# data = data.view((float, 4))
"""
'''
mdata = sm.datasets.macrodata.load(as_pandas=False).data
mdata2 = mdata[['realgdp','realcons','realinv']]
names = mdata2.dtype.names
data = mdata2.view((float,3))
data = np.diff(np.log(data), axis=0)
import pandas as pn
df = pn.DataFrame.fromRecords(mdata)
df = np.log(df.reindex(columns=names))
df = (df - df.shift(1)).dropna()
model = VAR(df)
est = model.fit(maxlags=2)
irf = est.irf()
'''