statsmodels.discrete.discrete_model.Probit.score¶
-
Probit.
score
(params)[source]¶ Probit model score (gradient) vector
- Parameters
- paramsarray_like
The parameters of the model
- Returns
- score
ndarray
, 1-D The score vector of the model, i.e. the first derivative of the loglikelihood function, evaluated at params
- score
Notes
∂lnL∂β=n∑i=1[qiϕ(qix′iβ)Φ(qix′iβ)]xiWhere q=2y−1. This simplification comes from the fact that the normal distribution is symmetric.