statsmodels.duration.hazard_regression.PHRegResults¶
-
class
statsmodels.duration.hazard_regression.
PHRegResults
(model, params, cov_params, scale=1.0, covariance_type='naive')[source]¶ Class to contain results of fitting a Cox proportional hazards survival model.
PHregResults inherits from statsmodels.LikelihoodModelResults
- Parameters
- See statsmodels.LikelihoodModelResults
See also
statsmodels.LikelihoodModelResults
- Attributes
- model
class
instance
PHreg model instance that called fit.
normalized_cov_params
ndarray
See specific model class docstring
- params
ndarray
The coefficients of the fitted model. Each coefficient is the log hazard ratio corresponding to a 1 unit difference in a single covariate while holding the other covariates fixed.
- bse
ndarray
The standard errors of the fitted parameters.
- model
Methods
conf_int
([alpha, cols])Construct confidence interval for the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Compute the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
Returns a scipy distribution object corresponding to the distribution of uncensored endog (duration) values for each case.
initialize
(model, params, **kwargs)Initialize (possibly re-initialize) a Results instance.
load
(fname)Load a pickled results instance
See specific model class docstring
predict
([endog, exog, strata, offset, …])Returns predicted values from the proportional hazards regression model.
Remove data arrays, all nobs arrays from result and model.
save
(fname[, remove_data])Save a pickle of this instance.
summary
([yname, xname, title, alpha])Summarize the proportional hazards regression results.
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q.
t_test_pairwise
(term_name[, method, alpha, …])Perform pairwise t_test with multiple testing corrected p-values.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns.
Methods
conf_int
([alpha, cols])Construct confidence interval for the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Compute the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
Returns a scipy distribution object corresponding to the distribution of uncensored endog (duration) values for each case.
initialize
(model, params, **kwargs)Initialize (possibly re-initialize) a Results instance.
load
(fname)Load a pickled results instance
See specific model class docstring
predict
([endog, exog, strata, offset, …])Returns predicted values from the proportional hazards regression model.
Remove data arrays, all nobs arrays from result and model.
save
(fname[, remove_data])Save a pickle of this instance.
summary
([yname, xname, title, alpha])Summarize the proportional hazards regression results.
t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q.
t_test_pairwise
(term_name[, method, alpha, …])Perform pairwise t_test with multiple testing corrected p-values.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns.
Properties
A list (corresponding to the strata) containing the baseline cumulative hazard function evaluated at the event points.
A list (corresponding to the strata) containing function objects that calculate the cumulative hazard function.
Returns the standard errors of the parameter estimates.
Log-likelihood of model
The martingale residuals.
The two-tailed p values for the t-stats of the params.
A matrix containing the Schoenfeld residuals.
A matrix containing the score residuals.
Returns the standard errors of the parameter estimates.
Return the t-statistic for a given parameter estimate.
Flag indicating to use the Student’s distribution in inference.
The average covariate values within the at-risk set at each event time point, weighted by hazard.