statsmodels.genmod.families.family.Tweedie¶
-
class
statsmodels.genmod.families.family.
Tweedie
(link=None, var_power=1.0, eql=False)[source]¶ Tweedie family.
- Parameters
- link
a
link
instance
,optional
The default link for the Tweedie family is the log link. Available links are log and Power. See statsmodels.genmod.families.links for more information.
- var_power
float
,optional
The variance power. The default is 1.
- eqlbool
If True, the Extended Quasi-Likelihood is used, else the likelihood is used (however the latter is not implemented). If eql is True, var_power must be between 1 and 2.
- link
See also
statsmodels.genmod.families.family.Family
Parent class for all links.
- Link Functions
Further details on links.
Notes
Loglikelihood function not implemented because of the complexity of calculating an infinite series of summations. The variance power can be estimated using the
estimate_tweedie_power
function that is part of the statsmodels.genmod.generalized_linear_model.GLM class.- Attributes
Methods
deviance
(endog, mu[, var_weights, …])The deviance function evaluated at (endog, mu, var_weights, freq_weights, scale) for the distribution.
fitted
(lin_pred)Fitted values based on linear predictors lin_pred.
loglike
(endog, mu[, var_weights, …])The log-likelihood function in terms of the fitted mean response.
loglike_obs
(endog, mu[, var_weights, scale])The log-likelihood function for each observation in terms of the fitted mean response for the Tweedie distribution.
predict
(mu)Linear predictors based on given mu values.
resid_anscombe
(endog, mu[, var_weights, scale])The Anscombe residuals
resid_dev
(endog, mu[, var_weights, scale])The deviance residuals
starting_mu
(y)Starting value for mu in the IRLS algorithm.
weights
(mu)Weights for IRLS steps
Methods
deviance
(endog, mu[, var_weights, …])The deviance function evaluated at (endog, mu, var_weights, freq_weights, scale) for the distribution.
fitted
(lin_pred)Fitted values based on linear predictors lin_pred.
loglike
(endog, mu[, var_weights, …])The log-likelihood function in terms of the fitted mean response.
loglike_obs
(endog, mu[, var_weights, scale])The log-likelihood function for each observation in terms of the fitted mean response for the Tweedie distribution.
predict
(mu)Linear predictors based on given mu values.
resid_anscombe
(endog, mu[, var_weights, scale])The Anscombe residuals
resid_dev
(endog, mu[, var_weights, scale])The deviance residuals
starting_mu
(y)Starting value for mu in the IRLS algorithm.
weights
(mu)Weights for IRLS steps
Properties
Link function for family