statsmodels.nonparametric.kernel_regression.KernelReg.cv_loo¶
-
KernelReg.
cv_loo
(bw, func)[source]¶ The cross-validation function with leave-one-out estimator.
- Parameters
- bwarray_like
Vector of bandwidth values.
- func
callable
function
Returns the estimator of g(x). Can be either
_est_loc_constant
(local constant) or_est_loc_linear
(local_linear).
- Returns
- L
float
The value of the CV function.
- L
Notes
Calculates the cross-validation least-squares function. This function is minimized by compute_bw to calculate the optimal value of bw.
For details see p.35 in [2]
CV(h)=n−1n∑i=1(Yi−g−i(Xi))2where g−i(Xi) is the leave-one-out estimator of g(X) and h is the vector of bandwidths