statsmodels.regression.mixed_linear_model.MixedLMResults¶
-
class
statsmodels.regression.mixed_linear_model.
MixedLMResults
(model, params, cov_params)[source]¶ Class to contain results of fitting a linear mixed effects model.
MixedLMResults inherits from statsmodels.LikelihoodModelResults
- Parameters
- See statsmodels.LikelihoodModelResults
See also
statsmodels.LikelihoodModelResults
- Attributes
- model
class
instance
Pointer to MixedLM model instance that called fit.
normalized_cov_params
ndarray
See specific model class docstring
- params
ndarray
A packed parameter vector for the profile parameterization. The first k_fe elements are the estimated fixed effects coefficients. The remaining elements are the estimated variance parameters. The variance parameters are all divided by scale and are not the variance parameters shown in the summary.
- fe_params
ndarray
The fitted fixed-effects coefficients
- cov_re
ndarray
The fitted random-effects covariance matrix
- bse_fe
ndarray
The standard errors of the fitted fixed effects coefficients
- bse_re
ndarray
The standard errors of the fitted random effects covariance matrix and variance components. The first k_re * (k_re + 1) parameters are the standard errors for the lower triangle of cov_re, the remaining elements are the standard errors for the variance components.
- model
Methods
bootstrap
([nrep, method, disp, store])simple bootstrap to get mean and variance of estimator
conf_int
([alpha, cols])Construct confidence interval for the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Compute the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
get_nlfun
(fun)This is not Implemented
initialize
(model, params, **kwargs)Initialize (possibly re-initialize) a Results instance.
load
(fname)Load a pickled results instance
See specific model class docstring
predict
([exog, transform])Call self.model.predict with self.params as the first argument.
profile_re
(re_ix, vtype[, num_low, …])Profile-likelihood inference for variance parameters.
Remove data arrays, all nobs arrays from result and model.
save
(fname[, remove_data])Save a pickle of this instance.
summary
([yname, xname_fe, xname_re, title, …])Summarize the mixed model regression results.
t_test
(r_matrix[, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise
(term_name[, method, alpha, …])Perform pairwise t_test with multiple testing corrected p-values.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns.
Methods
bootstrap
([nrep, method, disp, store])simple bootstrap to get mean and variance of estimator
conf_int
([alpha, cols])Construct confidence interval for the fitted parameters.
cov_params
([r_matrix, column, scale, cov_p, …])Compute the variance/covariance matrix.
f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis.
get_nlfun
(fun)This is not Implemented
initialize
(model, params, **kwargs)Initialize (possibly re-initialize) a Results instance.
load
(fname)Load a pickled results instance
See specific model class docstring
predict
([exog, transform])Call self.model.predict with self.params as the first argument.
profile_re
(re_ix, vtype[, num_low, …])Profile-likelihood inference for variance parameters.
Remove data arrays, all nobs arrays from result and model.
save
(fname[, remove_data])Save a pickle of this instance.
summary
([yname, xname_fe, xname_re, title, …])Summarize the mixed model regression results.
t_test
(r_matrix[, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q
t_test_pairwise
(term_name[, method, alpha, …])Perform pairwise t_test with multiple testing corrected p-values.
wald_test
(r_matrix[, cov_p, scale, invcov, …])Compute a Wald-test for a joint linear hypothesis.
wald_test_terms
([skip_single, …])Compute a sequence of Wald tests for terms over multiple columns.
Properties
Akaike information criterion
Bayesian information criterion
The standard errors of the parameter estimates.
Returns the standard errors of the fixed effect regression coefficients.
Returns the standard errors of the variance parameters.
standard deviation of parameter estimates based on covjac
standard deviation of parameter estimates based on covHJH
covariance of parameters based on outer product of jacobian of log-likelihood
covariance of parameters based on HJJH
Model WC
Returns the fitted values for the model.
cached Hessian of log-likelihood
The two-tailed p values for the t-stats of the params.
The conditional means of random effects given the data.
Returns the conditional covariance matrix of the random effects for each group given the data.
Returns the residuals for the model.
cached Jacobian of log-likelihood
Return the t-statistic for a given parameter estimate.
Flag indicating to use the Student’s distribution in inference.