statsmodels.sandbox.regression.gmm.IVRegressionResults

class statsmodels.sandbox.regression.gmm.IVRegressionResults(model, params, normalized_cov_params=None, scale=1.0, cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs)[source]

Results class for for an OLS model.

Most of the methods and attributes are inherited from RegressionResults. The special methods that are only available for OLS are:

  • get_influence

  • outlier_test

  • el_test

  • conf_int_el

See also

RegressionResults
Attributes
HC0_se

White’s (1980) heteroskedasticity robust standard errors.

Defined as sqrt(diag(X.T X)^(-1)X.T diag(e_i^(2)) X(X.T X)^(-1) where e_i = resid[i].

When HC0_se or cov_HC0 is called the RegressionResults instance will then have another attribute het_scale, which is in this case is just resid**2.

HC1_se

MacKinnon and White’s (1985) heteroskedasticity robust standard errors.

Defined as sqrt(diag(n/(n-p)*HC_0).

When HC1_se or cov_HC1 is called the RegressionResults instance will then have another attribute het_scale, which is in this case is n/(n-p)*resid**2.

HC2_se

MacKinnon and White’s (1985) heteroskedasticity robust standard errors.

Defined as (X.T X)^(-1)X.T diag(e_i^(2)/(1-h_ii)) X(X.T X)^(-1) where h_ii = x_i(X.T X)^(-1)x_i.T

When HC2_se or cov_HC2 is called the RegressionResults instance will then have another attribute het_scale, which is in this case is resid^(2)/(1-h_ii).

HC3_se

MacKinnon and White’s (1985) heteroskedasticity robust standard errors.

Defined as (X.T X)^(-1)X.T diag(e_i^(2)/(1-h_ii)^(2)) X(X.T X)^(-1) where h_ii = x_i(X.T X)^(-1)x_i.T.

When HC3_se or cov_HC3 is called the RegressionResults instance will then have another attribute het_scale, which is in this case is resid^(2)/(1-h_ii)^(2).

aic

Akaike’s information criteria.

For a model with a constant \(-2llf + 2(df\_model + 1)\). For a model without a constant \(-2llf + 2(df\_model)\).

bic

Bayes’ information criteria.

For a model with a constant \(-2llf + \log(n)(df\_model+1)\). For a model without a constant \(-2llf + \log(n)(df\_model)\).

bse

The standard errors of the parameter estimates.

centered_tss

The total (weighted) sum of squares centered about the mean.

condition_number

Return condition number of exogenous matrix.

Calculated as ratio of largest to smallest eigenvalue.

cov_HC0

Heteroscedasticity robust covariance matrix. See HC0_se.

cov_HC1

Heteroscedasticity robust covariance matrix. See HC1_se.

cov_HC2

Heteroscedasticity robust covariance matrix. See HC2_se.

cov_HC3

Heteroscedasticity robust covariance matrix. See HC3_se.

eigenvals

Return eigenvalues sorted in decreasing order.

ess

The explained sum of squares.

If a constant is present, the centered total sum of squares minus the sum of squared residuals. If there is no constant, the uncentered total sum of squares is used.

f_pvalue

The p-value of the F-statistic.

fittedvalues

The predicted values for the original (unwhitened) design.

fvalue
llf

Log-likelihood of model

mse_model

Mean squared error the model.

The explained sum of squares divided by the model degrees of freedom.

mse_resid

Mean squared error of the residuals.

The sum of squared residuals divided by the residual degrees of freedom.

mse_total

Total mean squared error.

The uncentered total sum of squares divided by the number of observations.

nobs

Number of observations n.

pvalues

The two-tailed p values for the t-stats of the params.

resid

The residuals of the model.

resid_pearson

Residuals, normalized to have unit variance.

array_like

The array wresid normalized by the sqrt of the scale to have unit variance.

rsquared

R-squared of the model.

This is defined here as 1 - ssr/centered_tss if the constant is included in the model and 1 - ssr/uncentered_tss if the constant is omitted.

rsquared_adj

Adjusted R-squared.

This is defined here as 1 - (nobs-1)/df_resid * (1-rsquared) if a constant is included and 1 - nobs/df_resid * (1-rsquared) if no constant is included.

ssr

Sum of squared (whitened) residuals.

tvalues

Return the t-statistic for a given parameter estimate.

uncentered_tss

Uncentered sum of squares.

The sum of the squared values of the (whitened) endogenous response variable.

use_t

Flag indicating to use the Student’s distribution in inference.

wresid

The residuals of the transformed/whitened regressand and regressor(s).

Methods

compare_f_test(restricted)

Use F test to test whether restricted model is correct.

compare_lm_test(restricted[, demean, use_lr])

Use Lagrange Multiplier test to test a set of linear restrictions.

compare_lr_test(restricted[, large_sample])

Likelihood ratio test to test whether restricted model is correct.

conf_int([alpha, cols])

Compute the confidence interval of the fitted parameters.

cov_params([r_matrix, column, scale, cov_p, …])

Compute the variance/covariance matrix.

f_test(r_matrix[, cov_p, scale, invcov])

Compute the F-test for a joint linear hypothesis.

get_prediction([exog, transform, weights, …])

Compute prediction results.

get_robustcov_results([cov_type, use_t])

Create new results instance with robust covariance as default.

initialize(model, params, **kwargs)

Initialize (possibly re-initialize) a Results instance.

load(fname)

Load a pickled results instance

normalized_cov_params()

See specific model class docstring

predict([exog, transform])

Call self.model.predict with self.params as the first argument.

remove_data()

Remove data arrays, all nobs arrays from result and model.

save(fname[, remove_data])

Save a pickle of this instance.

scale()

A scale factor for the covariance matrix.

spec_hausman([dof])

Hausman’s specification test

summary([yname, xname, title, alpha])

Summarize the Regression Results

summary2([yname, xname, title, alpha, …])

Experimental summary function to summarize the regression results.

t_test(r_matrix[, cov_p, scale, use_t])

Compute a t-test for a each linear hypothesis of the form Rb = q.

t_test_pairwise(term_name[, method, alpha, …])

Perform pairwise t_test with multiple testing corrected p-values.

wald_test(r_matrix[, cov_p, scale, invcov, …])

Compute a Wald-test for a joint linear hypothesis.

wald_test_terms([skip_single, …])

Compute a sequence of Wald tests for terms over multiple columns.

Methods

compare_f_test(restricted)

Use F test to test whether restricted model is correct.

compare_lm_test(restricted[, demean, use_lr])

Use Lagrange Multiplier test to test a set of linear restrictions.

compare_lr_test(restricted[, large_sample])

Likelihood ratio test to test whether restricted model is correct.

conf_int([alpha, cols])

Compute the confidence interval of the fitted parameters.

cov_params([r_matrix, column, scale, cov_p, …])

Compute the variance/covariance matrix.

f_test(r_matrix[, cov_p, scale, invcov])

Compute the F-test for a joint linear hypothesis.

get_prediction([exog, transform, weights, …])

Compute prediction results.

get_robustcov_results([cov_type, use_t])

Create new results instance with robust covariance as default.

initialize(model, params, **kwargs)

Initialize (possibly re-initialize) a Results instance.

load(fname)

Load a pickled results instance

normalized_cov_params()

See specific model class docstring

predict([exog, transform])

Call self.model.predict with self.params as the first argument.

remove_data()

Remove data arrays, all nobs arrays from result and model.

save(fname[, remove_data])

Save a pickle of this instance.

scale()

A scale factor for the covariance matrix.

spec_hausman([dof])

Hausman’s specification test

summary([yname, xname, title, alpha])

Summarize the Regression Results

summary2([yname, xname, title, alpha, …])

Experimental summary function to summarize the regression results.

t_test(r_matrix[, cov_p, scale, use_t])

Compute a t-test for a each linear hypothesis of the form Rb = q.

t_test_pairwise(term_name[, method, alpha, …])

Perform pairwise t_test with multiple testing corrected p-values.

wald_test(r_matrix[, cov_p, scale, invcov, …])

Compute a Wald-test for a joint linear hypothesis.

wald_test_terms([skip_single, …])

Compute a sequence of Wald tests for terms over multiple columns.

Properties

HC0_se

White’s (1980) heteroskedasticity robust standard errors.

HC1_se

MacKinnon and White’s (1985) heteroskedasticity robust standard errors.

HC2_se

MacKinnon and White’s (1985) heteroskedasticity robust standard errors.

HC3_se

MacKinnon and White’s (1985) heteroskedasticity robust standard errors.

aic

Akaike’s information criteria.

bic

Bayes’ information criteria.

bse

The standard errors of the parameter estimates.

centered_tss

The total (weighted) sum of squares centered about the mean.

condition_number

Return condition number of exogenous matrix.

cov_HC0

Heteroscedasticity robust covariance matrix.

cov_HC1

Heteroscedasticity robust covariance matrix.

cov_HC2

Heteroscedasticity robust covariance matrix.

cov_HC3

Heteroscedasticity robust covariance matrix.

eigenvals

Return eigenvalues sorted in decreasing order.

ess

The explained sum of squares.

f_pvalue

The p-value of the F-statistic.

fittedvalues

The predicted values for the original (unwhitened) design.

fvalue

llf

Log-likelihood of model

mse_model

Mean squared error the model.

mse_resid

Mean squared error of the residuals.

mse_total

Total mean squared error.

nobs

Number of observations n.

pvalues

The two-tailed p values for the t-stats of the params.

resid

The residuals of the model.

resid_pearson

Residuals, normalized to have unit variance.

rsquared

R-squared of the model.

rsquared_adj

Adjusted R-squared.

ssr

Sum of squared (whitened) residuals.

tvalues

Return the t-statistic for a given parameter estimate.

uncentered_tss

Uncentered sum of squares.

use_t

Flag indicating to use the Student’s distribution in inference.

wresid

The residuals of the transformed/whitened regressand and regressor(s).