statsmodels.tsa.exponential_smoothing.ets.ETSModel.loglike¶
-
ETSModel.
loglike
(params, **kwargs)[source]¶ Log-likelihood of model.
- Parameters
- params
np.ndarray
of
np.float
Model parameters: (alpha, beta, gamma, phi, l[-1], b[-1], s[-1], …, s[-m])
- params
Notes
The log-likelihood of a exponential smoothing model is [1]:
l(θ,x0|y)=−n2(log(2πs2)+1)−n∑t=1log(kt)with
s2=1nn∑t=1ˆyt−ytktwhere kt=1 for the additive error model and kt=yt for the multiplicative error model.
References
- 1
J. K. Ord, A. B. Koehler R. D. and Snyder (1997). Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models. Journal of the American Statistical Association, 92(440), 1621-1629