statsmodels.tsa.exponential_smoothing.ets.ETSModel.loglike

ETSModel.loglike(params, **kwargs)[source]

Log-likelihood of model.

Parameters
paramsnp.ndarray of np.float

Model parameters: (alpha, beta, gamma, phi, l[-1], b[-1], s[-1], …, s[-m])

Notes

The log-likelihood of a exponential smoothing model is [1]:

l(θ,x0|y)=n2(log(2πs2)+1)nt=1log(kt)

with

s2=1nnt=1ˆytytkt

where kt=1 for the additive error model and kt=yt for the multiplicative error model.

References

1

J. K. Ord, A. B. Koehler R. D. and Snyder (1997). Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models. Journal of the American Statistical Association, 92(440), 1621-1629