statsmodels.tsa.forecasting.theta.ThetaModelResults.plot_predict¶
-
ThetaModelResults.
plot_predict
(steps: int = 1, theta: float = 2, alpha: Optional[float] = 0.05, in_sample: bool = False, fig: Optional[matplotlib.figure.Figure] = None, figsize: Tuple[float, float] = None) → matplotlib.figure.Figure[source]¶ Plot forecasts, prediction intervals and in-sample values
- Parameters
- steps
int
,default
1 The number of steps ahead to compute the forecast components.
- theta
float
,default
2 The theta value to use when computing the weight to combine the trend and the SES forecasts.
- alpha{
float
,None
},default
0.05 The tail probability not covered by the confidence interval. Must be in (0, 1). Confidence interval is constructed assuming normally distributed shocks. If None, figure will not show the confidence interval.
- in_samplebool,
default
False
Flag indicating whether to include the in-sample period in the plot.
- fig
Figure
,default
None
An existing figure handle. If not provided, a new figure is created.
- figsize: tuple[float, float], default None
Tuple containing the figure size.
- steps
- Returns
Figure
Figure handle containing the plot.
Notes
The variance of the h-step forecast is assumed to follow from the integrated Moving Average structure of the Theta model, and so is \(\sigma^2(\alpha^2 + (h-1))\). The prediction interval assumes that innovations are normally distributed.