Source code for statsmodels.base.optimizer

"""
Functions that are general enough to use for any model fitting. The idea is
to untie these from LikelihoodModel so that they may be re-used generally.
"""
from __future__ import annotations

from typing import Any, Sequence
import numpy as np
from scipy import optimize


def check_kwargs(kwargs: dict[str, Any], allowed: Sequence[str], method: str):
    extra = set(list(kwargs.keys())).difference(list(allowed))
    if extra:
        import warnings

        warnings.warn(
            f"Keyword arguments have been passed to the optimizer that have "
            f"no effect. The list of allowed keyword arguments for method "
            f"{method} is: {', '.join(allowed)}. The list of unsupported "
            f"keyword arguments passed include: {', '.join(extra)}. After "
            f"release 0.14, this will raise.",
            FutureWarning
        )


def _check_method(method, methods):
    if method not in methods:
        message = "Unknown fit method %s" % method
        raise ValueError(message)


[docs]class Optimizer(object): def _fit(self, objective, gradient, start_params, fargs, kwargs, hessian=None, method='newton', maxiter=100, full_output=True, disp=True, callback=None, retall=False): """ Fit function for any model with an objective function. Parameters ---------- objective : function Objective function to be minimized. gradient : function The gradient of the objective function. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) hessian : str, optional Method for computing the Hessian matrix, if applicable. method : str {'newton','nm','bfgs','powell','cg','ncg','basinhopping', 'minimize'} Method can be 'newton' for Newton-Raphson, 'nm' for Nelder-Mead, 'bfgs' for Broyden-Fletcher-Goldfarb-Shanno, 'powell' for modified Powell's method, 'cg' for conjugate gradient, 'ncg' for Newton- conjugate gradient, 'basinhopping' for global basin-hopping solver, if available or a generic 'minimize' which is a wrapper for scipy.optimize.minimize. `method` determines which solver from scipy.optimize is used. The explicit arguments in `fit` are passed to the solver, with the exception of the basin-hopping solver. Each solver has several optional arguments that are not the same across solvers. See the notes section below (or scipy.optimize) for the available arguments and for the list of explicit arguments that the basin-hopping solver supports.. maxiter : int The maximum number of iterations to perform. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool Set to True to print convergence messages. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. optim_settings : dict A dictionary that contains the parameters passed to the solver. Notes ----- The 'basinhopping' solver ignores `maxiter`, `retall`, `full_output` explicit arguments. Optional arguments for the solvers (available in Results.mle_settings):: 'newton' tol : float Relative error in params acceptable for convergence. 'nm' -- Nelder Mead xtol : float Relative error in params acceptable for convergence ftol : float Relative error in loglike(params) acceptable for convergence maxfun : int Maximum number of function evaluations to make. 'bfgs' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.Inf is max, -np.Inf is min) epsilon If fprime is approximated, use this value for the step size. Only relevant if LikelihoodModel.score is None. 'lbfgs' m : int The maximum number of variable metric corrections used to define the limited memory matrix. (The limited memory BFGS method does not store the full hessian but uses this many terms in an approximation to it.) pgtol : float The iteration will stop when ``max{|proj g_i | i = 1, ..., n} <= pgtol`` where pg_i is the i-th component of the projected gradient. factr : float The iteration stops when ``(f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr * eps``, where eps is the machine precision, which is automatically generated by the code. Typical values for factr are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy. See Notes for relationship to ftol, which is exposed (instead of factr) by the scipy.optimize.minimize interface to L-BFGS-B. maxfun : int Maximum number of iterations. epsilon : float Step size used when approx_grad is True, for numerically calculating the gradient approx_grad : bool Whether to approximate the gradient numerically (in which case func returns only the function value). 'cg' gtol : float Stop when norm of gradient is less than gtol. norm : float Order of norm (np.Inf is max, -np.Inf is min) epsilon : float If fprime is approximated, use this value for the step size. Can be scalar or vector. Only relevant if Likelihoodmodel.score is None. 'ncg' fhess_p : callable f'(x,*args) Function which computes the Hessian of f times an arbitrary vector, p. Should only be supplied if LikelihoodModel.hessian is None. avextol : float Stop when the average relative error in the minimizer falls below this amount. epsilon : float or ndarray If fhess is approximated, use this value for the step size. Only relevant if Likelihoodmodel.hessian is None. 'powell' xtol : float Line-search error tolerance ftol : float Relative error in loglike(params) for acceptable for convergence. maxfun : int Maximum number of function evaluations to make. start_direc : ndarray Initial direction set. 'basinhopping' niter : int The number of basin hopping iterations. niter_success : int Stop the run if the global minimum candidate remains the same for this number of iterations. T : float The "temperature" parameter for the accept or reject criterion. Higher "temperatures" mean that larger jumps in function value will be accepted. For best results `T` should be comparable to the separation (in function value) between local minima. stepsize : float Initial step size for use in the random displacement. interval : int The interval for how often to update the `stepsize`. minimizer : dict Extra keyword arguments to be passed to the minimizer `scipy.optimize.minimize()`, for example 'method' - the minimization method (e.g. 'L-BFGS-B'), or 'tol' - the tolerance for termination. Other arguments are mapped from explicit argument of `fit`: - `args` <- `fargs` - `jac` <- `score` - `hess` <- `hess` 'minimize' min_method : str, optional Name of minimization method to use. Any method specific arguments can be passed directly. For a list of methods and their arguments, see documentation of `scipy.optimize.minimize`. If no method is specified, then BFGS is used. """ # TODO: generalize the regularization stuff # Extract kwargs specific to fit_regularized calling fit extra_fit_funcs = kwargs.get('extra_fit_funcs', dict()) methods = ['newton', 'nm', 'bfgs', 'lbfgs', 'powell', 'cg', 'ncg', 'basinhopping', 'minimize'] methods += extra_fit_funcs.keys() method = method.lower() _check_method(method, methods) fit_funcs = { 'newton': _fit_newton, 'nm': _fit_nm, # Nelder-Mead 'bfgs': _fit_bfgs, 'lbfgs': _fit_lbfgs, 'cg': _fit_cg, 'ncg': _fit_ncg, 'powell': _fit_powell, 'basinhopping': _fit_basinhopping, 'minimize': _fit_minimize # wrapper for scipy.optimize.minimize } # NOTE: fit_regularized checks the methods for these but it should be # moved up probably if extra_fit_funcs: fit_funcs.update(extra_fit_funcs) func = fit_funcs[method] xopt, retvals = func(objective, gradient, start_params, fargs, kwargs, disp=disp, maxiter=maxiter, callback=callback, retall=retall, full_output=full_output, hess=hessian) optim_settings = {'optimizer': method, 'start_params': start_params, 'maxiter': maxiter, 'full_output': full_output, 'disp': disp, 'fargs': fargs, 'callback': callback, 'retall': retall, "extra_fit_funcs": extra_fit_funcs} optim_settings.update(kwargs) # set as attributes or return? return xopt, retvals, optim_settings def _fit_constrained(self, params): """ TODO: how to add constraints? Something like sm.add_constraint(Model, func) or model_instance.add_constraint(func) model_instance.add_constraint("x1 + x2 = 2") result = model_instance.fit() """ raise NotImplementedError def _fit_regularized(self, params): # TODO: code will not necessarily be general here. 3 options. # 1) setup for scipy.optimize.fmin_sqlsqp # 2) setup for cvxopt # 3) setup for openopt raise NotImplementedError
######################################## # Helper functions to fit def _fit_minimize(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using scipy minimize, where kwarg `min_method` defines the algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ kwargs.setdefault('min_method', 'BFGS') # prepare options dict for minimize filter_opts = ['extra_fit_funcs', 'niter', 'min_method', 'tol', 'bounds', 'constraints'] options = {k: v for k, v in kwargs.items() if k not in filter_opts} options['disp'] = disp options['maxiter'] = maxiter # Use Hessian/Jacobian only if they're required by the method no_hess = ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'COBYLA', 'SLSQP'] no_jac = ['Nelder-Mead', 'Powell', 'COBYLA'] if kwargs['min_method'] in no_hess: hess = None if kwargs['min_method'] in no_jac: score = None # Use bounds/constraints only if they're allowed by the method has_bounds = ['L-BFGS-B', 'TNC', 'SLSQP', 'trust-constr'] has_constraints = ['COBYLA', 'SLSQP', 'trust-constr'] if 'bounds' in kwargs.keys() and kwargs['min_method'] in has_bounds: bounds = kwargs['bounds'] else: bounds = None if 'constraints' in kwargs.keys() and kwargs['min_method'] in has_constraints: constraints = kwargs['constraints'] else: constraints = () res = optimize.minimize(f, start_params, args=fargs, method=kwargs['min_method'], jac=score, hess=hess, bounds=bounds, constraints=constraints, callback=callback, options=options) xopt = res.x retvals = None if full_output: nit = getattr(res, 'nit', np.nan) # scipy 0.14 compat retvals = {'fopt': res.fun, 'iterations': nit, 'fcalls': res.nfev, 'warnflag': res.status, 'converged': res.success} if retall: retvals.update({'allvecs': res.values()}) return xopt, retvals
[docs]def _fit_newton(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None, ridge_factor=1e-10): """ Fit using Newton-Raphson algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. ridge_factor : float Regularization factor for Hessian matrix. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("tol",), "newton") tol = kwargs.setdefault('tol', 1e-8) iterations = 0 oldparams = np.inf newparams = np.asarray(start_params) if retall: history = [oldparams, newparams] while (iterations < maxiter and np.any(np.abs(newparams - oldparams) > tol)): H = np.asarray(hess(newparams)) # regularize Hessian, not clear what ridge factor should be # keyword option with absolute default 1e-10, see #1847 if not np.all(ridge_factor == 0): H[np.diag_indices(H.shape[0])] += ridge_factor oldparams = newparams newparams = oldparams - np.linalg.solve(H, score(oldparams)) if retall: history.append(newparams) if callback is not None: callback(newparams) iterations += 1 fval = f(newparams, *fargs) # this is the negative likelihood if iterations == maxiter: warnflag = 1 if disp: print("Warning: Maximum number of iterations has been " "exceeded.") print(" Current function value: %f" % fval) print(" Iterations: %d" % iterations) else: warnflag = 0 if disp: print("Optimization terminated successfully.") print(" Current function value: %f" % fval) print(" Iterations %d" % iterations) if full_output: (xopt, fopt, niter, gopt, hopt) = (newparams, f(newparams, *fargs), iterations, score(newparams), hess(newparams)) converged = not warnflag retvals = {'fopt': fopt, 'iterations': niter, 'score': gopt, 'Hessian': hopt, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': history}) else: xopt = newparams retvals = None return xopt, retvals
[docs]def _fit_bfgs(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Broyden-Fletcher-Goldfarb-Shannon algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("gtol", "norm", "epsilon"), "bfgs") gtol = kwargs.setdefault('gtol', 1.0000000000000001e-05) norm = kwargs.setdefault('norm', np.Inf) epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08) retvals = optimize.fmin_bfgs(f, start_params, score, args=fargs, gtol=gtol, norm=norm, epsilon=epsilon, maxiter=maxiter, full_output=full_output, disp=disp, retall=retall, callback=callback) if full_output: if not retall: xopt, fopt, gopt, Hinv, fcalls, gcalls, warnflag = retvals else: (xopt, fopt, gopt, Hinv, fcalls, gcalls, warnflag, allvecs) = retvals converged = not warnflag retvals = {'fopt': fopt, 'gopt': gopt, 'Hinv': Hinv, 'fcalls': fcalls, 'gcalls': gcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
[docs]def _fit_lbfgs(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Limited-memory Broyden-Fletcher-Goldfarb-Shannon algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. Notes ----- Within the mle part of statsmodels, the log likelihood function and its gradient with respect to the parameters do not have notationally consistent sign. """ check_kwargs( kwargs, ("m", "pgtol", "factr", "maxfun", "epsilon", "approx_grad", "bounds", "loglike_and_score"), "lbfgs" ) # Use unconstrained optimization by default. bounds = kwargs.setdefault('bounds', [(None, None)] * len(start_params)) kwargs.setdefault('iprint', 0) # Pass the following keyword argument names through to fmin_l_bfgs_b # if they are present in kwargs, otherwise use the fmin_l_bfgs_b # default values. names = ('m', 'pgtol', 'factr', 'maxfun', 'epsilon', 'approx_grad') extra_kwargs = dict((x, kwargs[x]) for x in names if x in kwargs) # Extract values for the options related to the gradient. approx_grad = kwargs.get('approx_grad', False) loglike_and_score = kwargs.get('loglike_and_score', None) epsilon = kwargs.get('epsilon', None) # The approx_grad flag has superpowers nullifying the score function arg. if approx_grad: score = None # Choose among three options for dealing with the gradient (the gradient # of a log likelihood function with respect to its parameters # is more specifically called the score in statistics terminology). # The first option is to use the finite-differences # approximation that is built into the fmin_l_bfgs_b optimizer. # The second option is to use the provided score function. # The third option is to use the score component of a provided # function that simultaneously evaluates the log likelihood and score. if epsilon and not approx_grad: raise ValueError('a finite-differences epsilon was provided ' 'even though we are not using approx_grad') if approx_grad and loglike_and_score: raise ValueError('gradient approximation was requested ' 'even though an analytic loglike_and_score function ' 'was given') if loglike_and_score: func = lambda p, *a: tuple(-x for x in loglike_and_score(p, *a)) elif score: func = f extra_kwargs['fprime'] = score elif approx_grad: func = f retvals = optimize.fmin_l_bfgs_b(func, start_params, maxiter=maxiter, callback=callback, args=fargs, bounds=bounds, disp=disp, **extra_kwargs) if full_output: xopt, fopt, d = retvals # The warnflag is # 0 if converged # 1 if too many function evaluations or too many iterations # 2 if stopped for another reason, given in d['task'] warnflag = d['warnflag'] converged = (warnflag == 0) gopt = d['grad'] fcalls = d['funcalls'] iterations = d['nit'] retvals = {'fopt': fopt, 'gopt': gopt, 'fcalls': fcalls, 'warnflag': warnflag, 'converged': converged, 'iterations': iterations} else: xopt = retvals[0] retvals = None return xopt, retvals
[docs]def _fit_nm(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Nelder-Mead algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("xtol", "ftol", "maxfun"), "nm") xtol = kwargs.setdefault('xtol', 0.0001) ftol = kwargs.setdefault('ftol', 0.0001) maxfun = kwargs.setdefault('maxfun', None) retvals = optimize.fmin(f, start_params, args=fargs, xtol=xtol, ftol=ftol, maxiter=maxiter, maxfun=maxfun, full_output=full_output, disp=disp, retall=retall, callback=callback) if full_output: if not retall: xopt, fopt, niter, fcalls, warnflag = retvals else: xopt, fopt, niter, fcalls, warnflag, allvecs = retvals converged = not warnflag retvals = {'fopt': fopt, 'iterations': niter, 'fcalls': fcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
[docs]def _fit_cg(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Conjugate Gradient algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("gtol", "norm", "epsilon"), "cg") gtol = kwargs.setdefault('gtol', 1.0000000000000001e-05) norm = kwargs.setdefault('norm', np.Inf) epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08) retvals = optimize.fmin_cg(f, start_params, score, gtol=gtol, norm=norm, epsilon=epsilon, maxiter=maxiter, full_output=full_output, disp=disp, retall=retall, callback=callback) if full_output: if not retall: xopt, fopt, fcalls, gcalls, warnflag = retvals else: xopt, fopt, fcalls, gcalls, warnflag, allvecs = retvals converged = not warnflag retvals = {'fopt': fopt, 'fcalls': fcalls, 'gcalls': gcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
[docs]def _fit_ncg(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Newton Conjugate Gradient algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("fhess_p", "avextol", "epsilon"), "ncg") fhess_p = kwargs.setdefault('fhess_p', None) avextol = kwargs.setdefault('avextol', 1.0000000000000001e-05) epsilon = kwargs.setdefault('epsilon', 1.4901161193847656e-08) retvals = optimize.fmin_ncg(f, start_params, score, fhess_p=fhess_p, fhess=hess, args=fargs, avextol=avextol, epsilon=epsilon, maxiter=maxiter, full_output=full_output, disp=disp, retall=retall, callback=callback) if full_output: if not retall: xopt, fopt, fcalls, gcalls, hcalls, warnflag = retvals else: xopt, fopt, fcalls, gcalls, hcalls, warnflag, allvecs = \ retvals converged = not warnflag retvals = {'fopt': fopt, 'fcalls': fcalls, 'gcalls': gcalls, 'hcalls': hcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
[docs]def _fit_powell(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Powell's conjugate direction algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs(kwargs, ("xtol", "ftol", "maxfun", "start_direc"), "powell") xtol = kwargs.setdefault('xtol', 0.0001) ftol = kwargs.setdefault('ftol', 0.0001) maxfun = kwargs.setdefault('maxfun', None) start_direc = kwargs.setdefault('start_direc', None) retvals = optimize.fmin_powell(f, start_params, args=fargs, xtol=xtol, ftol=ftol, maxiter=maxiter, maxfun=maxfun, full_output=full_output, disp=disp, retall=retall, callback=callback, direc=start_direc) if full_output: if not retall: xopt, fopt, direc, niter, fcalls, warnflag = retvals else: xopt, fopt, direc, niter, fcalls, warnflag, allvecs = \ retvals converged = not warnflag retvals = {'fopt': fopt, 'direc': direc, 'iterations': niter, 'fcalls': fcalls, 'warnflag': warnflag, 'converged': converged} if retall: retvals.update({'allvecs': allvecs}) else: xopt = retvals retvals = None return xopt, retvals
[docs]def _fit_basinhopping(f, score, start_params, fargs, kwargs, disp=True, maxiter=100, callback=None, retall=False, full_output=True, hess=None): """ Fit using Basin-hopping algorithm. Parameters ---------- f : function Returns negative log likelihood given parameters. score : function Returns gradient of negative log likelihood with respect to params. start_params : array_like, optional Initial guess of the solution for the loglikelihood maximization. The default is an array of zeros. fargs : tuple Extra arguments passed to the objective function, i.e. objective(x,*args) kwargs : dict[str, Any] Extra keyword arguments passed to the objective function, i.e. objective(x,**kwargs) disp : bool Set to True to print convergence messages. maxiter : int The maximum number of iterations to perform. callback : callable callback(xk) Called after each iteration, as callback(xk), where xk is the current parameter vector. retall : bool Set to True to return list of solutions at each iteration. Available in Results object's mle_retvals attribute. full_output : bool Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. hess : str, optional Method for computing the Hessian matrix, if applicable. Returns ------- xopt : ndarray The solution to the objective function retvals : dict, None If `full_output` is True then this is a dictionary which holds information returned from the solver used. If it is False, this is None. """ check_kwargs( kwargs, ("niter", "niter_success", "T", "stepsize", "interval", "minimizer", "seed"), "basinhopping" ) kwargs = {k: v for k, v in kwargs.items()} niter = kwargs.setdefault('niter', 100) niter_success = kwargs.setdefault('niter_success', None) T = kwargs.setdefault('T', 1.0) stepsize = kwargs.setdefault('stepsize', 0.5) interval = kwargs.setdefault('interval', 50) seed = kwargs.get("seed") minimizer_kwargs = kwargs.get('minimizer', {}) minimizer_kwargs['args'] = fargs minimizer_kwargs['jac'] = score method = minimizer_kwargs.get('method', None) if method and method != 'L-BFGS-B': # l_bfgs_b does not take a hessian minimizer_kwargs['hess'] = hess retvals = optimize.basinhopping(f, start_params, minimizer_kwargs=minimizer_kwargs, niter=niter, niter_success=niter_success, T=T, stepsize=stepsize, disp=disp, callback=callback, interval=interval, seed=seed) xopt = retvals.x if full_output: retvals = { 'fopt': retvals.fun, 'iterations': retvals.nit, 'fcalls': retvals.nfev, 'converged': 'completed successfully' in retvals.message[0] } else: retvals = None return xopt, retvals