Source code for statsmodels.sandbox.regression.gmm

'''Generalized Method of Moments, GMM, and Two-Stage Least Squares for
instrumental variables IV2SLS



Issues
------
* number of parameters, nparams, and starting values for parameters
  Where to put them? start was initially taken from global scope (bug)
* When optimal weighting matrix cannot be calculated numerically
  In DistQuantilesGMM, we only have one row of moment conditions, not a
  moment condition for each observation, calculation for cov of moments
  breaks down. iter=1 works (weights is identity matrix)
  -> need method to do one iteration with an identity matrix or an
     analytical weighting matrix given as parameter.
  -> add result statistics for this case, e.g. cov_params, I have it in the
     standalone function (and in calc_covparams which is a copy of it),
     but not tested yet.
  DONE `fitonce` in DistQuantilesGMM, params are the same as in direct call to fitgmm
      move it to GMM class (once it's clearer for which cases I need this.)
* GMM does not know anything about the underlying model, e.g. y = X beta + u or panel
  data model. It would be good if we can reuse methods from regressions, e.g.
  predict, fitted values, calculating the error term, and some result statistics.
  What's the best way to do this, multiple inheritance, outsourcing the functions,
  mixins or delegation (a model creates a GMM instance just for estimation).


Unclear
-------
* dof in Hausman
  - based on rank
  - differs between IV2SLS method and function used with GMM or (IV2SLS)
  - with GMM, covariance matrix difference has negative eigenvalues in iv example, ???
* jtest/jval
  - I'm not sure about the normalization (multiply or divide by nobs) in jtest.
    need a test case. Scaling of jval is irrelevant for estimation.
    jval in jtest looks to large in example, but I have no idea about the size
* bse for fitonce look too large (no time for checking now)
    formula for calc_cov_params for the case without optimal weighting matrix
    is wrong. I do not have an estimate for omega in that case. And I'm confusing
    between weights and omega, which are *not* the same in this case.



Author: josef-pktd
License: BSD (3-clause)

'''


from statsmodels.compat.python import lrange

import numpy as np
from scipy import optimize, stats

from statsmodels.tools.numdiff import approx_fprime
from statsmodels.base.model import (Model,
                                    LikelihoodModel, LikelihoodModelResults)
from statsmodels.regression.linear_model import (OLS, RegressionResults,
                                                 RegressionResultsWrapper)
import statsmodels.stats.sandwich_covariance as smcov
from statsmodels.tools.decorators import cache_readonly
from statsmodels.tools.tools import _ensure_2d

DEBUG = 0


def maxabs(x):
    '''just a shortcut to np.abs(x).max()
    '''
    return np.abs(x).max()


[docs]class IV2SLS(LikelihoodModel): """ Instrumental variables estimation using Two-Stage Least-Squares (2SLS) Parameters ---------- endog : ndarray Endogenous variable, 1-dimensional or 2-dimensional array nobs by 1 exog : ndarray Explanatory variables, 1-dimensional or 2-dimensional array nobs by k instrument : ndarray Instruments for explanatory variables. Must contain both exog variables that are not being instrumented and instruments Notes ----- All variables in exog are instrumented in the calculations. If variables in exog are not supposed to be instrumented, then these variables must also to be included in the instrument array. Degrees of freedom in the calculation of the standard errors uses `df_resid = (nobs - k_vars)`. (This corresponds to the `small` option in Stata's ivreg2.) """ def __init__(self, endog, exog, instrument=None): self.instrument, self.instrument_names = _ensure_2d(instrument, True) super(IV2SLS, self).__init__(endog, exog) # where is this supposed to be handled # Note: Greene p.77/78 dof correction is not necessary (because only # asy results), but most packages do it anyway self.df_resid = self.exog.shape[0] - self.exog.shape[1] #self.df_model = float(self.rank - self.k_constant) self.df_model = float(self.exog.shape[1] - self.k_constant)
[docs] def initialize(self): self.wendog = self.endog self.wexog = self.exog
[docs] def whiten(self, X): """Not implemented""" pass
[docs] def fit(self): '''estimate model using 2SLS IV regression Returns ------- results : instance of RegressionResults regression result Notes ----- This returns a generic RegressioResults instance as defined for the linear models. Parameter estimates and covariance are correct, but other results have not been tested yet, to see whether they apply without changes. ''' #Greene 5th edt., p.78 section 5.4 #move this maybe y,x,z = self.endog, self.exog, self.instrument # TODO: this uses "textbook" calculation, improve linalg ztz = np.dot(z.T, z) ztx = np.dot(z.T, x) self.xhatparams = xhatparams = np.linalg.solve(ztz, ztx) #print 'x.T.shape, xhatparams.shape', x.shape, xhatparams.shape F = xhat = np.dot(z, xhatparams) FtF = np.dot(F.T, F) self.xhatprod = FtF #store for Housman specification test Ftx = np.dot(F.T, x) Fty = np.dot(F.T, y) params = np.linalg.solve(FtF, Fty) Ftxinv = np.linalg.inv(Ftx) self.normalized_cov_params = np.dot(Ftxinv.T, np.dot(FtF, Ftxinv)) lfit = IVRegressionResults(self, params, normalized_cov_params=self.normalized_cov_params) lfit.exog_hat_params = xhatparams lfit.exog_hat = xhat # TODO: do we want to store this, might be large self._results_ols2nd = OLS(y, xhat).fit() return RegressionResultsWrapper(lfit)
# copied from GLS, because I subclass currently LikelihoodModel and not GLS
[docs] def predict(self, params, exog=None): """ Return linear predicted values from a design matrix. Parameters ---------- exog : array_like Design / exogenous data params : array_like, optional after fit has been called Parameters of a linear model Returns ------- An array of fitted values Notes ----- If the model as not yet been fit, params is not optional. """ if exog is None: exog = self.exog return np.dot(exog, params)
[docs]class IVRegressionResults(RegressionResults): """ Results class for for an OLS model. Most of the methods and attributes are inherited from RegressionResults. The special methods that are only available for OLS are: - get_influence - outlier_test - el_test - conf_int_el See Also -------- RegressionResults """ @cache_readonly def fvalue(self): const_idx = self.model.data.const_idx # if constant is implicit or missing, return nan see #2444, #3544 if const_idx is None: return np.nan else: k_vars = len(self.params) restriction = np.eye(k_vars) idx_noconstant = lrange(k_vars) del idx_noconstant[const_idx] fval = self.f_test(restriction[idx_noconstant]).fvalue # without constant return fval
[docs] def spec_hausman(self, dof=None): '''Hausman's specification test See Also -------- spec_hausman : generic function for Hausman's specification test ''' #use normalized cov_params for OLS endog, exog = self.model.endog, self.model.exog resols = OLS(endog, exog).fit() normalized_cov_params_ols = resols.model.normalized_cov_params # Stata `ivendog` does not use df correction for se #se2 = resols.mse_resid #* resols.df_resid * 1. / len(endog) se2 = resols.ssr / len(endog) params_diff = self.params - resols.params cov_diff = np.linalg.pinv(self.model.xhatprod) - normalized_cov_params_ols #TODO: the following is very inefficient, solves problem (svd) twice #use linalg.lstsq or svd directly #cov_diff will very often be in-definite (singular) if not dof: dof = np.linalg.matrix_rank(cov_diff) cov_diffpinv = np.linalg.pinv(cov_diff) H = np.dot(params_diff, np.dot(cov_diffpinv, params_diff))/se2 pval = stats.chi2.sf(H, dof) return H, pval, dof
# copied from regression results with small changes, no llf
[docs] def summary(self, yname=None, xname=None, title=None, alpha=.05): """Summarize the Regression Results Parameters ---------- yname : str, optional Default is `y` xname : list[str], optional Default is `var_##` for ## in p the number of regressors title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ #TODO: import where we need it (for now), add as cached attributes from statsmodels.stats.stattools import (jarque_bera, omni_normtest, durbin_watson) jb, jbpv, skew, kurtosis = jarque_bera(self.wresid) omni, omnipv = omni_normtest(self.wresid) #TODO: reuse condno from somewhere else ? #condno = np.linalg.cond(np.dot(self.wexog.T, self.wexog)) wexog = self.model.wexog eigvals = np.linalg.linalg.eigvalsh(np.dot(wexog.T, wexog)) eigvals = np.sort(eigvals) #in increasing order condno = np.sqrt(eigvals[-1]/eigvals[0]) # TODO: check what is valid. # box-pierce, breusch-pagan, durbin's h are not with endogenous on rhs # use Cumby Huizinga 1992 instead self.diagn = dict(jb=jb, jbpv=jbpv, skew=skew, kurtosis=kurtosis, omni=omni, omnipv=omnipv, condno=condno, mineigval=eigvals[0]) #TODO not used yet #diagn_left_header = ['Models stats'] #diagn_right_header = ['Residual stats'] #TODO: requiring list/iterable is a bit annoying #need more control over formatting #TODO: default do not work if it's not identically spelled top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['Two Stage']), ('', ['Least Squares']), ('Date:', None), ('Time:', None), ('No. Observations:', None), ('Df Residuals:', None), #[self.df_resid]), #TODO: spelling ('Df Model:', None), #[self.df_model]) ] top_right = [('R-squared:', ["%#8.3f" % self.rsquared]), ('Adj. R-squared:', ["%#8.3f" % self.rsquared_adj]), ('F-statistic:', ["%#8.4g" % self.fvalue] ), ('Prob (F-statistic):', ["%#6.3g" % self.f_pvalue]), #('Log-Likelihood:', None), #["%#6.4g" % self.llf]), #('AIC:', ["%#8.4g" % self.aic]), #('BIC:', ["%#8.4g" % self.bic]) ] diagn_left = [('Omnibus:', ["%#6.3f" % omni]), ('Prob(Omnibus):', ["%#6.3f" % omnipv]), ('Skew:', ["%#6.3f" % skew]), ('Kurtosis:', ["%#6.3f" % kurtosis]) ] diagn_right = [('Durbin-Watson:', ["%#8.3f" % durbin_watson(self.wresid)]), ('Jarque-Bera (JB):', ["%#8.3f" % jb]), ('Prob(JB):', ["%#8.3g" % jbpv]), ('Cond. No.', ["%#8.3g" % condno]) ] if title is None: title = self.model.__class__.__name__ + ' ' + "Regression Results" #create summary table instance from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=True) smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, yname=yname, xname=xname, title="") return smry
############# classes for Generalized Method of Moments GMM _gmm_options = '''\ Options for GMM --------------- Type of GMM ~~~~~~~~~~~ - one-step - iterated - CUE : not tested yet weight matrix ~~~~~~~~~~~~~ - `weights_method` : str, defines method for robust Options here are similar to :mod:`statsmodels.stats.robust_covariance` default is heteroscedasticity consistent, HC0 currently available methods are - `cov` : HC0, optionally with degrees of freedom correction - `hac` : - `iid` : untested, only for Z*u case, IV cases with u as error indep of Z - `ac` : not available yet - `cluster` : not connected yet - others from robust_covariance other arguments: - `wargs` : tuple or dict, required arguments for weights_method - `centered` : bool, indicates whether moments are centered for the calculation of the weights and covariance matrix, applies to all weight_methods - `ddof` : int degrees of freedom correction, applies currently only to `cov` - maxlag : int number of lags to include in HAC calculation , applies only to `hac` - others not yet, e.g. groups for cluster robust covariance matrix ~~~~~~~~~~~~~~~~~ The same options as for weight matrix also apply to the calculation of the estimate of the covariance matrix of the parameter estimates. The additional option is - `has_optimal_weights`: If true, then the calculation of the covariance matrix assumes that we have optimal GMM with :math:`W = S^{-1}`. Default is True. TODO: do we want to have a different default after `onestep`? '''
[docs]class GMM(Model): ''' Class for estimation by Generalized Method of Moments needs to be subclassed, where the subclass defined the moment conditions `momcond` Parameters ---------- endog : ndarray endogenous variable, see notes exog : ndarray array of exogenous variables, see notes instrument : ndarray array of instruments, see notes nmoms : None or int number of moment conditions, if None then it is set equal to the number of columns of instruments. Mainly needed to determine the shape or size of start parameters and starting weighting matrix. kwds : anything this is mainly if additional variables need to be stored for the calculations of the moment conditions Attributes ---------- results : instance of GMMResults currently just a storage class for params and cov_params without it's own methods bse : property return bse Notes ----- The GMM class only uses the moment conditions and does not use any data directly. endog, exog, instrument and kwds in the creation of the class instance are only used to store them for access in the moment conditions. Which of this are required and how they are used depends on the moment conditions of the subclass. Warning: Options for various methods have not been fully implemented and are still missing in several methods. TODO: currently onestep (maxiter=0) still produces an updated estimate of bse and cov_params. ''' results_class = 'GMMResults' def __init__(self, endog, exog, instrument, k_moms=None, k_params=None, missing='none', **kwds): ''' maybe drop and use mixin instead TODO: GMM does not really care about the data, just the moment conditions ''' instrument = self._check_inputs(instrument, endog) # attaches if needed super(GMM, self).__init__(endog, exog, missing=missing, instrument=instrument) # self.endog = endog # self.exog = exog # self.instrument = instrument self.nobs = endog.shape[0] if k_moms is not None: self.nmoms = k_moms elif instrument is not None: self.nmoms = instrument.shape[1] else: self.nmoms = np.nan if k_params is not None: self.k_params = k_params elif instrument is not None: self.k_params = exog.shape[1] else: self.k_params = np.nan self.__dict__.update(kwds) self.epsilon_iter = 1e-6 def _check_inputs(self, instrument, endog): if instrument is not None: offset = np.asarray(instrument) if offset.shape[0] != endog.shape[0]: raise ValueError("instrument is not the same length as endog") return instrument def _fix_param_names(self, params, param_names=None): # TODO: this is a temporary fix, need xnames = self.data.xnames if param_names is not None: if len(params) == len(param_names): self.data.xnames = param_names else: raise ValueError('param_names has the wrong length') else: if len(params) < len(xnames): # cut in front for poisson multiplicative self.data.xnames = xnames[-len(params):] elif len(params) > len(xnames): # use generic names self.data.xnames = ['p%2d' % i for i in range(len(params))]
[docs] def set_param_names(self, param_names, k_params=None): """set the parameter names in the model Parameters ---------- param_names : list[str] param_names should have the same length as the number of params k_params : None or int If k_params is None, then the k_params attribute is used, unless it is None. If k_params is not None, then it will also set the k_params attribute. """ if k_params is not None: self.k_params = k_params else: k_params = self.k_params if k_params == len(param_names): self.data.xnames = param_names else: raise ValueError('param_names has the wrong length')
[docs] def fit(self, start_params=None, maxiter=10, inv_weights=None, weights_method='cov', wargs=(), has_optimal_weights=True, optim_method='bfgs', optim_args=None): ''' Estimate parameters using GMM and return GMMResults TODO: weight and covariance arguments still need to be made consistent with similar options in other models, see RegressionResult.get_robustcov_results Parameters ---------- start_params : array (optional) starting value for parameters ub minimization. If None then fitstart method is called for the starting values. maxiter : int or 'cue' Number of iterations in iterated GMM. The onestep estimate can be obtained with maxiter=0 or 1. If maxiter is large, then the iteration will stop either at maxiter or on convergence of the parameters (TODO: no options for convergence criteria yet.) If `maxiter == 'cue'`, the the continuously updated GMM is calculated which updates the weight matrix during the minimization of the GMM objective function. The CUE estimation uses the onestep parameters as starting values. inv_weights : None or ndarray inverse of the starting weighting matrix. If inv_weights are not given then the method `start_weights` is used which depends on the subclass, for IV subclasses `inv_weights = z'z` where `z` are the instruments, otherwise an identity matrix is used. weights_method : str, defines method for robust Options here are similar to :mod:`statsmodels.stats.robust_covariance` default is heteroscedasticity consistent, HC0 currently available methods are - `cov` : HC0, optionally with degrees of freedom correction - `hac` : - `iid` : untested, only for Z*u case, IV cases with u as error indep of Z - `ac` : not available yet - `cluster` : not connected yet - others from robust_covariance wargs` : tuple or dict, required and optional arguments for weights_method - `centered` : bool, indicates whether moments are centered for the calculation of the weights and covariance matrix, applies to all weight_methods - `ddof` : int degrees of freedom correction, applies currently only to `cov` - `maxlag` : int number of lags to include in HAC calculation , applies only to `hac` - others not yet, e.g. groups for cluster robust has_optimal_weights: If true, then the calculation of the covariance matrix assumes that we have optimal GMM with :math:`W = S^{-1}`. Default is True. TODO: do we want to have a different default after `onestep`? optim_method : str, default is 'bfgs' numerical optimization method. Currently not all optimizers that are available in LikelihoodModels are connected. optim_args : dict keyword arguments for the numerical optimizer. Returns ------- results : instance of GMMResults this is also attached as attribute results Notes ----- Warning: One-step estimation, `maxiter` either 0 or 1, still has problems (at least compared to Stata's gmm). By default it uses a heteroscedasticity robust covariance matrix, but uses the assumption that the weight matrix is optimal. See options for cov_params in the results instance. The same options as for weight matrix also apply to the calculation of the estimate of the covariance matrix of the parameter estimates. ''' # TODO: add check for correct wargs keys # currently a misspelled key is not detected, # because I'm still adding options # TODO: check repeated calls to fit with different options # arguments are dictionaries, i.e. mutable # unit test if anything is stale or spilled over. #bug: where does start come from ??? start = start_params # alias for renaming if start is None: start = self.fitstart() #TODO: temporary hack if inv_weights is None: inv_weights if optim_args is None: optim_args = {} if 'disp' not in optim_args: optim_args['disp'] = 1 if maxiter == 0 or maxiter == 'cue': if inv_weights is not None: weights = np.linalg.pinv(inv_weights) else: # let start_weights handle the inv=False for maxiter=0 weights = self.start_weights(inv=False) params = self.fitgmm(start, weights=weights, optim_method=optim_method, optim_args=optim_args) weights_ = weights # temporary alias used in jval else: params, weights = self.fititer(start, maxiter=maxiter, start_invweights=inv_weights, weights_method=weights_method, wargs=wargs, optim_method=optim_method, optim_args=optim_args) # TODO weights returned by fititer is inv_weights - not true anymore # weights_ currently not necessary and used anymore weights_ = np.linalg.pinv(weights) if maxiter == 'cue': #we have params from maxiter= 0 as starting value # TODO: need to give weights options to gmmobjective_cu params = self.fitgmm_cu(params, optim_method=optim_method, optim_args=optim_args) # weights is stored as attribute weights = self._weights_cu #TODO: use Bunch instead ? options_other = {'weights_method':weights_method, 'has_optimal_weights':has_optimal_weights, 'optim_method':optim_method} # check that we have the right number of xnames self._fix_param_names(params, param_names=None) results = results_class_dict[self.results_class]( model = self, params = params, weights = weights, wargs = wargs, options_other = options_other, optim_args = optim_args) self.results = results # FIXME: remove, still keeping it temporarily return results
[docs] def fitgmm(self, start, weights=None, optim_method='bfgs', optim_args=None): '''estimate parameters using GMM Parameters ---------- start : array_like starting values for minimization weights : ndarray weighting matrix for moment conditions. If weights is None, then the identity matrix is used Returns ------- paramest : ndarray estimated parameters Notes ----- todo: add fixed parameter option, not here ??? uses scipy.optimize.fmin ''' ## if not fixed is None: #fixed not defined in this version ## raise NotImplementedError # TODO: should start_weights only be in `fit` if weights is None: weights = self.start_weights(inv=False) if optim_args is None: optim_args = {} if optim_method == 'nm': optimizer = optimize.fmin elif optim_method == 'bfgs': optimizer = optimize.fmin_bfgs # TODO: add score optim_args['fprime'] = self.score #lambda params: self.score(params, weights) elif optim_method == 'ncg': optimizer = optimize.fmin_ncg optim_args['fprime'] = self.score elif optim_method == 'cg': optimizer = optimize.fmin_cg optim_args['fprime'] = self.score elif optim_method == 'fmin_l_bfgs_b': optimizer = optimize.fmin_l_bfgs_b optim_args['fprime'] = self.score elif optim_method == 'powell': optimizer = optimize.fmin_powell elif optim_method == 'slsqp': optimizer = optimize.fmin_slsqp else: raise ValueError('optimizer method not available') if DEBUG: print(np.linalg.det(weights)) #TODO: add other optimization options and results return optimizer(self.gmmobjective, start, args=(weights,), **optim_args)
[docs] def fitgmm_cu(self, start, optim_method='bfgs', optim_args=None): '''estimate parameters using continuously updating GMM Parameters ---------- start : array_like starting values for minimization Returns ------- paramest : ndarray estimated parameters Notes ----- todo: add fixed parameter option, not here ??? uses scipy.optimize.fmin ''' ## if not fixed is None: #fixed not defined in this version ## raise NotImplementedError if optim_args is None: optim_args = {} if optim_method == 'nm': optimizer = optimize.fmin elif optim_method == 'bfgs': optimizer = optimize.fmin_bfgs optim_args['fprime'] = self.score_cu elif optim_method == 'ncg': optimizer = optimize.fmin_ncg else: raise ValueError('optimizer method not available') #TODO: add other optimization options and results return optimizer(self.gmmobjective_cu, start, args=(), **optim_args)
[docs] def start_weights(self, inv=True): """Create identity matrix for starting weights""" return np.eye(self.nmoms)
[docs] def gmmobjective(self, params, weights): ''' objective function for GMM minimization Parameters ---------- params : ndarray parameter values at which objective is evaluated weights : ndarray weighting matrix Returns ------- jval : float value of objective function ''' moms = self.momcond_mean(params) return np.dot(np.dot(moms, weights), moms)
#moms = self.momcond(params) #return np.dot(np.dot(moms.mean(0),weights), moms.mean(0))
[docs] def gmmobjective_cu(self, params, weights_method='cov', wargs=()): ''' objective function for continuously updating GMM minimization Parameters ---------- params : ndarray parameter values at which objective is evaluated Returns ------- jval : float value of objective function ''' moms = self.momcond(params) inv_weights = self.calc_weightmatrix(moms, weights_method=weights_method, wargs=wargs) weights = np.linalg.pinv(inv_weights) self._weights_cu = weights # store if we need it later return np.dot(np.dot(moms.mean(0), weights), moms.mean(0))
[docs] def fititer(self, start, maxiter=2, start_invweights=None, weights_method='cov', wargs=(), optim_method='bfgs', optim_args=None): '''iterative estimation with updating of optimal weighting matrix stopping criteria are maxiter or change in parameter estimate less than self.epsilon_iter, with default 1e-6. Parameters ---------- start : ndarray starting value for parameters maxiter : int maximum number of iterations start_weights : array (nmoms, nmoms) initial weighting matrix; if None, then the identity matrix is used weights_method : {'cov', ...} method to use to estimate the optimal weighting matrix, see calc_weightmatrix for details Returns ------- params : ndarray estimated parameters weights : ndarray optimal weighting matrix calculated with final parameter estimates Notes ----- ''' self.history = [] momcond = self.momcond if start_invweights is None: w = self.start_weights(inv=True) else: w = start_invweights #call fitgmm function #args = (self.endog, self.exog, self.instrument) #args is not used in the method version winv_new = w for it in range(maxiter): winv = winv_new w = np.linalg.pinv(winv) #this is still calling function not method ## resgmm = fitgmm(momcond, (), start, weights=winv, fixed=None, ## weightsoptimal=False) resgmm = self.fitgmm(start, weights=w, optim_method=optim_method, optim_args=optim_args) moms = momcond(resgmm) # the following is S = cov_moments winv_new = self.calc_weightmatrix(moms, weights_method=weights_method, wargs=wargs, params=resgmm) if it > 2 and maxabs(resgmm - start) < self.epsilon_iter: #check rule for early stopping # TODO: set has_optimal_weights = True break start = resgmm return resgmm, w
[docs] def calc_weightmatrix(self, moms, weights_method='cov', wargs=(), params=None): ''' calculate omega or the weighting matrix Parameters ---------- moms : ndarray moment conditions (nobs x nmoms) for all observations evaluated at a parameter value weights_method : str 'cov' If method='cov' is cov then the matrix is calculated as simple covariance of the moment conditions. see fit method for available aoptions for the weight and covariance matrix wargs : tuple or dict parameters that are required by some kernel methods to estimate the long-run covariance. Not used yet. Returns ------- w : array (nmoms, nmoms) estimate for the weighting matrix or covariance of the moment condition Notes ----- currently a constant cutoff window is used TODO: implement long-run cov estimators, kernel-based Newey-West Andrews Andrews-Moy???? References ---------- Greene Hansen, Bruce ''' nobs, k_moms = moms.shape # TODO: wargs are tuple or dict ? if DEBUG: print(' momcov wargs', wargs) centered = not ('centered' in wargs and not wargs['centered']) if not centered: # caller does not want centered moment conditions moms_ = moms else: moms_ = moms - moms.mean() # TODO: store this outside to avoid doing this inside optimization loop # TODO: subclasses need to be able to add weights_methods, and remove # IVGMM can have homoscedastic (OLS), # some options will not make sense in some cases # possible add all here and allow subclasses to define a list # TODO: should other weights_methods also have `ddof` if weights_method == 'cov': w = np.dot(moms_.T, moms_) if 'ddof' in wargs: # caller requests degrees of freedom correction if wargs['ddof'] == 'k_params': w /= (nobs - self.k_params) else: if DEBUG: print(' momcov ddof', wargs['ddof']) w /= (nobs - wargs['ddof']) else: # default: divide by nobs w /= nobs elif weights_method == 'flatkernel': #uniform cut-off window # This was a trial version, can use HAC with flatkernel if 'maxlag' not in wargs: raise ValueError('flatkernel requires maxlag') maxlag = wargs['maxlag'] h = np.ones(maxlag + 1) w = np.dot(moms_.T, moms_)/nobs for i in range(1,maxlag+1): w += (h[i] * np.dot(moms_[i:].T, moms_[:-i]) / (nobs-i)) elif weights_method == 'hac': maxlag = wargs['maxlag'] if 'kernel' in wargs: weights_func = wargs['kernel'] else: weights_func = smcov.weights_bartlett wargs['kernel'] = weights_func w = smcov.S_hac_simple(moms_, nlags=maxlag, weights_func=weights_func) w /= nobs #(nobs - self.k_params) elif weights_method == 'iid': # only when we have instruments and residual mom = Z * u # TODO: problem we do not have params in argument # I cannot keep everything in here w/o params as argument u = self.get_error(params) if centered: # Note: I'm not centering instruments, # should not we always center u? Ok, with centered as default u -= u.mean(0) #demean inplace, we do not need original u instrument = self.instrument w = np.dot(instrument.T, instrument).dot(np.dot(u.T, u)) / nobs if 'ddof' in wargs: # caller requests degrees of freedom correction if wargs['ddof'] == 'k_params': w /= (nobs - self.k_params) else: # assume ddof is a number if DEBUG: print(' momcov ddof', wargs['ddof']) w /= (nobs - wargs['ddof']) else: # default: divide by nobs w /= nobs else: raise ValueError('weight method not available') return w
[docs] def momcond_mean(self, params): ''' mean of moment conditions, ''' momcond = self.momcond(params) self.nobs_moms, self.k_moms = momcond.shape return momcond.mean(0)
[docs] def gradient_momcond(self, params, epsilon=1e-4, centered=True): '''gradient of moment conditions Parameters ---------- params : ndarray parameter at which the moment conditions are evaluated epsilon : float stepsize for finite difference calculation centered : bool This refers to the finite difference calculation. If `centered` is true, then the centered finite difference calculation is used. Otherwise the one-sided forward differences are used. TODO: looks like not used yet missing argument `weights` ''' momcond = self.momcond_mean # TODO: approx_fprime has centered keyword if centered: gradmoms = (approx_fprime(params, momcond, epsilon=epsilon) + approx_fprime(params, momcond, epsilon=-epsilon))/2 else: gradmoms = approx_fprime(params, momcond, epsilon=epsilon) return gradmoms
[docs] def score(self, params, weights, epsilon=None, centered=True): """Score""" deriv = approx_fprime(params, self.gmmobjective, args=(weights,), centered=centered, epsilon=epsilon) return deriv
[docs] def score_cu(self, params, epsilon=None, centered=True): """Score cu""" deriv = approx_fprime(params, self.gmmobjective_cu, args=(), centered=centered, epsilon=epsilon) return deriv
# TODO: wrong superclass, I want tvalues, ... right now
[docs]class GMMResults(LikelihoodModelResults): '''just a storage class right now''' use_t = False def __init__(self, *args, **kwds): self.__dict__.update(kwds) self.nobs = self.model.nobs self.df_resid = np.inf self.cov_params_default = self._cov_params() @cache_readonly def q(self): """Objective function at params""" return self.model.gmmobjective(self.params, self.weights) @cache_readonly def jval(self): """nobs_moms attached by momcond_mean""" return self.q * self.model.nobs_moms def _cov_params(self, **kwds): #TODO add options ???) # this should use by default whatever options have been specified in # fit # TODO: do not do this when we want to change options # if hasattr(self, '_cov_params'): # #replace with decorator later # return self._cov_params # set defaults based on fit arguments if 'wargs' not in kwds: # Note: we do not check the keys in wargs, use either all or nothing kwds['wargs'] = self.wargs if 'weights_method' not in kwds: kwds['weights_method'] = self.options_other['weights_method'] if 'has_optimal_weights' not in kwds: kwds['has_optimal_weights'] = self.options_other['has_optimal_weights'] gradmoms = self.model.gradient_momcond(self.params) moms = self.model.momcond(self.params) covparams = self.calc_cov_params(moms, gradmoms, **kwds) return covparams
[docs] def calc_cov_params(self, moms, gradmoms, weights=None, use_weights=False, has_optimal_weights=True, weights_method='cov', wargs=()): '''calculate covariance of parameter estimates not all options tried out yet If weights matrix is given, then the formula use to calculate cov_params depends on whether has_optimal_weights is true. If no weights are given, then the weight matrix is calculated with the given method, and has_optimal_weights is assumed to be true. (API Note: The latter assumption could be changed if we allow for has_optimal_weights=None.) ''' nobs = moms.shape[0] if weights is None: #omegahat = self.model.calc_weightmatrix(moms, method=method, wargs=wargs) #has_optimal_weights = True #add other options, Barzen, ... longrun var estimators # TODO: this might still be inv_weights after fititer weights = self.weights else: pass #omegahat = weights #2 different names used, #TODO: this is wrong, I need an estimate for omega if use_weights: omegahat = weights else: omegahat = self.model.calc_weightmatrix( moms, weights_method=weights_method, wargs=wargs, params=self.params) if has_optimal_weights: #has_optimal_weights: # TOD0 make has_optimal_weights depend on convergence or iter >2 cov = np.linalg.inv(np.dot(gradmoms.T, np.dot(np.linalg.inv(omegahat), gradmoms))) else: gw = np.dot(gradmoms.T, weights) gwginv = np.linalg.inv(np.dot(gw, gradmoms)) cov = np.dot(np.dot(gwginv, np.dot(np.dot(gw, omegahat), gw.T)), gwginv) #cov /= nobs return cov/nobs
@property def bse_(self): '''standard error of the parameter estimates ''' return self.get_bse()
[docs] def get_bse(self, **kwds): '''standard error of the parameter estimates with options Parameters ---------- kwds : optional keywords options for calculating cov_params Returns ------- bse : ndarray estimated standard error of parameter estimates ''' return np.sqrt(np.diag(self.cov_params(**kwds)))
[docs] def jtest(self): '''overidentification test I guess this is missing a division by nobs, what's the normalization in jval ? ''' jstat = self.jval nparams = self.params.size #self.nparams df = self.model.nmoms - nparams return jstat, stats.chi2.sf(jstat, df), df
[docs] def compare_j(self, other): '''overidentification test for comparing two nested gmm estimates This assumes that some moment restrictions have been dropped in one of the GMM estimates relative to the other. Not tested yet We are comparing two separately estimated models, that use different weighting matrices. It is not guaranteed that the resulting difference is positive. TODO: Check in which cases Stata programs use the same weigths ''' jstat1 = self.jval k_moms1 = self.model.nmoms jstat2 = other.jval k_moms2 = other.model.nmoms jdiff = jstat1 - jstat2 df = k_moms1 - k_moms2 if df < 0: # possible nested in other way, TODO allow this or not # flip sign instead of absolute df = - df jdiff = - jdiff return jdiff, stats.chi2.sf(jdiff, df), df
[docs] def summary(self, yname=None, xname=None, title=None, alpha=.05): """Summarize the Regression Results Parameters ---------- yname : str, optional Default is `y` xname : list[str], optional Default is `var_##` for ## in p the number of regressors title : str, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ #TODO: add a summary text for options that have been used jvalue, jpvalue, jdf = self.jtest() top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['GMM']), ('Date:', None), ('Time:', None), ('No. Observations:', None), #('Df Residuals:', None), #[self.df_resid]), #TODO: spelling #('Df Model:', None), #[self.df_model]) ] top_right = [#('R-squared:', ["%#8.3f" % self.rsquared]), #('Adj. R-squared:', ["%#8.3f" % self.rsquared_adj]), ('Hansen J:', ["%#8.4g" % jvalue] ), ('Prob (Hansen J):', ["%#6.3g" % jpvalue]), #('F-statistic:', ["%#8.4g" % self.fvalue] ), #('Prob (F-statistic):', ["%#6.3g" % self.f_pvalue]), #('Log-Likelihood:', None), #["%#6.4g" % self.llf]), #('AIC:', ["%#8.4g" % self.aic]), #('BIC:', ["%#8.4g" % self.bic]) ] if title is None: title = self.model.__class__.__name__ + ' ' + "Results" # create summary table instance from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=self.use_t) return smry
[docs]class IVGMM(GMM): ''' Basic class for instrumental variables estimation using GMM A linear function for the conditional mean is defined as default but the methods should be overwritten by subclasses, currently `LinearIVGMM` and `NonlinearIVGMM` are implemented as subclasses. See Also -------- LinearIVGMM NonlinearIVGMM ''' results_class = 'IVGMMResults'
[docs] def fitstart(self): """Create array of zeros""" return np.zeros(self.exog.shape[1])
[docs] def start_weights(self, inv=True): """Starting weights""" zz = np.dot(self.instrument.T, self.instrument) nobs = self.instrument.shape[0] if inv: return zz / nobs else: return np.linalg.pinv(zz / nobs)
[docs] def get_error(self, params): """Get error at params""" return self.endog - self.predict(params)
[docs] def predict(self, params, exog=None): """Get prediction at params""" if exog is None: exog = self.exog return np.dot(exog, params)
[docs] def momcond(self, params): """Error times instrument""" instrument = self.instrument return instrument * self.get_error(params)[:, None]
[docs]class LinearIVGMM(IVGMM): """class for linear instrumental variables models estimated with GMM Uses closed form expression instead of nonlinear optimizers for each step of the iterative GMM. The model is assumed to have the following moment condition E( z * (y - x beta)) = 0 Where `y` is the dependent endogenous variable, `x` are the explanatory variables and `z` are the instruments. Variables in `x` that are exogenous need also be included in `z`. Notation Warning: our name `exog` stands for the explanatory variables, and includes both exogenous and explanatory variables that are endogenous, i.e. included endogenous variables Parameters ---------- endog : array_like dependent endogenous variable exog : array_like explanatory, right hand side variables, including explanatory variables that are endogenous instrument : array_like Instrumental variables, variables that are exogenous to the error in the linear model containing both included and excluded exogenous variables """
[docs] def fitgmm(self, start, weights=None, optim_method=None, **kwds): '''estimate parameters using GMM for linear model Uses closed form expression instead of nonlinear optimizers Parameters ---------- start : not used starting values for minimization, not used, only for consistency of method signature weights : ndarray weighting matrix for moment conditions. If weights is None, then the identity matrix is used optim_method : not used, optimization method, not used, only for consistency of method signature **kwds : keyword arguments not used, will be silently ignored (for compatibility with generic) Returns ------- paramest : ndarray estimated parameters ''' ## if not fixed is None: #fixed not defined in this version ## raise NotImplementedError # TODO: should start_weights only be in `fit` if weights is None: weights = self.start_weights(inv=False) y, x, z = self.endog, self.exog, self.instrument zTx = np.dot(z.T, x) zTy = np.dot(z.T, y) # normal equation, solved with pinv part0 = zTx.T.dot(weights) part1 = part0.dot(zTx) part2 = part0.dot(zTy) params = np.linalg.pinv(part1).dot(part2) return params
[docs] def predict(self, params, exog=None): if exog is None: exog = self.exog return np.dot(exog, params)
[docs] def gradient_momcond(self, params, **kwds): # **kwds for compatibility not used x, z = self.exog, self.instrument gradmoms = -np.dot(z.T, x) / self.nobs return gradmoms
[docs] def score(self, params, weights, **kwds): # **kwds for compatibility, not used # Note: I coud use general formula with gradient_momcond instead x, z = self.exog, self.instrument nobs = z.shape[0] u = self.get_errors(params) score = -2 * np.dot(x.T, z).dot(weights.dot(np.dot(z.T, u))) score /= nobs * nobs return score
[docs]class NonlinearIVGMM(IVGMM): """ Class for non-linear instrumental variables estimation wusing GMM The model is assumed to have the following moment condition E[ z * (y - f(X, beta)] = 0 Where `y` is the dependent endogenous variable, `x` are the explanatory variables and `z` are the instruments. Variables in `x` that are exogenous need also be included in z. `f` is a nonlinear function. Notation Warning: our name `exog` stands for the explanatory variables, and includes both exogenous and explanatory variables that are endogenous, i.e. included endogenous variables Parameters ---------- endog : array_like dependent endogenous variable exog : array_like explanatory, right hand side variables, including explanatory variables that are endogenous. instruments : array_like Instrumental variables, variables that are exogenous to the error in the linear model containing both included and excluded exogenous variables func : callable function for the mean or conditional expectation of the endogenous variable. The function will be called with parameters and the array of explanatory, right hand side variables, `func(params, exog)` Notes ----- This class uses numerical differences to obtain the derivative of the objective function. If the jacobian of the conditional mean function, `func` is available, then it can be used by subclassing this class and defining a method `jac_func`. TODO: check required signature of jac_error and jac_func """ # This should be reversed: # NonlinearIVGMM is IVGMM and need LinearIVGMM as special case (fit, predict)
[docs] def fitstart(self): #might not make sense for more general functions return np.zeros(self.exog.shape[1])
def __init__(self, endog, exog, instrument, func, **kwds): self.func = func super(NonlinearIVGMM, self).__init__(endog, exog, instrument, **kwds)
[docs] def predict(self, params, exog=None): if exog is None: exog = self.exog return self.func(params, exog)
#---------- the following a semi-general versions, # TODO: move to higher class after testing
[docs] def jac_func(self, params, weights, args=None, centered=True, epsilon=None): # TODO: Why are ther weights in the signature - copy-paste error? deriv = approx_fprime(params, self.func, args=(self.exog,), centered=centered, epsilon=epsilon) return deriv
[docs] def jac_error(self, params, weights, args=None, centered=True, epsilon=None): jac_func = self.jac_func(params, weights, args=None, centered=True, epsilon=None) return -jac_func
[docs] def score(self, params, weights, **kwds): # **kwds for compatibility not used # Note: I coud use general formula with gradient_momcond instead z = self.instrument nobs = z.shape[0] jac_u = self.jac_error(params, weights, args=None, epsilon=None, centered=True) x = -jac_u # alias, plays the same role as X in linear model u = self.get_error(params) score = -2 * np.dot(np.dot(x.T, z), weights).dot(np.dot(z.T, u)) score /= nobs * nobs return score
[docs]class IVGMMResults(GMMResults): """Results class of IVGMM""" # this assumes that we have an additive error model `(y - f(x, params))` @cache_readonly def fittedvalues(self): """Fitted values""" return self.model.predict(self.params) @cache_readonly def resid(self): """Residuals""" return self.model.endog - self.fittedvalues @cache_readonly def ssr(self): """Sum of square errors""" return (self.resid * self.resid).sum(0)
def spec_hausman(params_e, params_i, cov_params_e, cov_params_i, dof=None): '''Hausmans specification test Parameters ---------- params_e : ndarray efficient and consistent under Null hypothesis, inconsistent under alternative hypothesis params_i : ndarray consistent under Null hypothesis, consistent under alternative hypothesis cov_params_e : ndarray, 2d covariance matrix of parameter estimates for params_e cov_params_i : ndarray, 2d covariance matrix of parameter estimates for params_i example instrumental variables OLS estimator is `e`, IV estimator is `i` Notes ----- Todos,Issues - check dof calculations and verify for linear case - check one-sided hypothesis References ---------- Greene section 5.5 p.82/83 ''' params_diff = (params_i - params_e) cov_diff = cov_params_i - cov_params_e #TODO: the following is very inefficient, solves problem (svd) twice #use linalg.lstsq or svd directly #cov_diff will very often be in-definite (singular) if not dof: dof = np.linalg.matrix_rank(cov_diff) cov_diffpinv = np.linalg.pinv(cov_diff) H = np.dot(params_diff, np.dot(cov_diffpinv, params_diff)) pval = stats.chi2.sf(H, dof) evals = np.linalg.eigvalsh(cov_diff) return H, pval, dof, evals ########### class DistQuantilesGMM(GMM): ''' Estimate distribution parameters by GMM based on matching quantiles Currently mainly to try out different requirements for GMM when we cannot calculate the optimal weighting matrix. ''' def __init__(self, endog, exog, instrument, **kwds): #TODO: something wrong with super super(DistQuantilesGMM, self).__init__(endog, exog, instrument) #self.func = func self.epsilon_iter = 1e-5 self.distfn = kwds['distfn'] #done by super does not work yet #TypeError: super does not take keyword arguments self.endog = endog #make this optional for fit if 'pquant' not in kwds: self.pquant = pquant = np.array([0.01, 0.05,0.1,0.4,0.6,0.9,0.95,0.99]) else: self.pquant = pquant = kwds['pquant'] #TODO: vectorize this: use edf self.xquant = np.array([stats.scoreatpercentile(endog, p) for p in pquant*100]) self.nmoms = len(self.pquant) #TODOcopied from GMM, make super work self.endog = endog self.exog = exog self.instrument = instrument self.results = GMMResults(model=self) #self.__dict__.update(kwds) self.epsilon_iter = 1e-6 def fitstart(self): #todo: replace with or add call to distfn._fitstart # added but not used during testing distfn = self.distfn if hasattr(distfn, '_fitstart'): start = distfn._fitstart(self.endog) else: start = [1]*distfn.numargs + [0.,1.] return np.asarray(start) def momcond(self, params): #drop distfn as argument #, mom2, quantile=None, shape=None '''moment conditions for estimating distribution parameters by matching quantiles, defines as many moment conditions as quantiles. Returns ------- difference : ndarray difference between theoretical and empirical quantiles Notes ----- This can be used for method of moments or for generalized method of moments. ''' #this check looks redundant/unused know if len(params) == 2: loc, scale = params elif len(params) == 3: shape, loc, scale = params else: #raise NotImplementedError pass #see whether this might work, seems to work for beta with 2 shape args #mom2diff = np.array(distfn.stats(*params)) - mom2 #if not quantile is None: pq, xq = self.pquant, self.xquant #ppfdiff = distfn.ppf(pq, alpha) cdfdiff = self.distfn.cdf(xq, *params) - pq #return np.concatenate([mom2diff, cdfdiff[:1]]) return np.atleast_2d(cdfdiff) def fitonce(self, start=None, weights=None, has_optimal_weights=False): '''fit without estimating an optimal weighting matrix and return results This is a convenience function that calls fitgmm and covparams with a given weight matrix or the identity weight matrix. This is useful if the optimal weight matrix is know (or is analytically given) or if an optimal weight matrix cannot be calculated. (Developer Notes: this function could go into GMM, but is needed in this class, at least at the moment.) Parameters ---------- Returns ------- results : GMMResult instance result instance with params and _cov_params attached See Also -------- fitgmm cov_params ''' if weights is None: weights = np.eye(self.nmoms) params = self.fitgmm(start=start) # TODO: rewrite this old hack, should use fitgmm or fit maxiter=0 self.results.params = params #required before call to self.cov_params self.results.wargs = {} #required before call to self.cov_params self.results.options_other = {'weights_method':'cov'} # TODO: which weights_method? There should not be any needed ? _cov_params = self.results.cov_params(weights=weights, has_optimal_weights=has_optimal_weights) self.results.weights = weights self.results.jval = self.gmmobjective(params, weights) self.results.options_other.update({'has_optimal_weights':has_optimal_weights}) return self.results results_class_dict = {'GMMResults': GMMResults, 'IVGMMResults': IVGMMResults, 'DistQuantilesGMM': GMMResults} #TODO: should be a default