Source code for statsmodels.tsa.exponential_smoothing.ets

r"""
ETS models for time series analysis.

The ETS models are a family of time series models. They can be seen as a
generalization of simple exponential smoothing to time series that contain
trends and seasonalities. Additionally, they have an underlying state space
model.

An ETS model is specified by an error type (E; additive or multiplicative), a
trend type (T; additive or multiplicative, both damped or undamped, or none),
and a seasonality type (S; additive or multiplicative or none).
The following gives a very short summary, a more thorough introduction can be
found in [1]_.

Denote with :math:`\circ_b` the trend operation (addition or
multiplication), with :math:`\circ_d` the operation linking trend and dampening
factor :math:`\phi` (multiplication if trend is additive, power if trend is
multiplicative), and with :math:`\circ_s` the seasonality operation (addition
or multiplication).
Furthermore, let :math:`\ominus` be the respective inverse operation
(subtraction or division).

With this, it is possible to formulate the ETS models as a forecast equation
and 3 smoothing equations. The former is used to forecast observations, the
latter are used to update the internal state.

.. math::

    \hat{y}_{t|t-1} &= (l_{t-1} \circ_b (b_{t-1}\circ_d \phi))\circ_s s_{t-m}\\
    l_{t} &= \alpha (y_{t} \ominus_s s_{t-m})
             + (1 - \alpha) (l_{t-1} \circ_b (b_{t-1} \circ_d \phi))\\
    b_{t} &= \beta/\alpha (l_{t} \ominus_b l_{t-1})
             + (1 - \beta/\alpha) b_{t-1}\\
    s_{t} &= \gamma (y_t \ominus_s (l_{t-1} \circ_b (b_{t-1}\circ_d\phi))
             + (1 - \gamma) s_{t-m}

The notation here follows [1]_; :math:`l_t` denotes the level at time
:math:`t`, `b_t` the trend, and `s_t` the seasonal component. :math:`m` is the
number of seasonal periods, and :math:`\phi` a trend damping factor.
The parameters :math:`\alpha, \beta, \gamma` are the smoothing parameters,
which are called ``smoothing_level``, ``smoothing_trend``, and
``smoothing_seasonal``, respectively.

Note that the formulation above as forecast and smoothing equation does not
distinguish different error models -- it is the same for additive and
multiplicative errors. But the different error models lead to different
likelihood models, and therefore will lead to different fit results.

The error models specify how the true values :math:`y_t` are updated. In the
additive error model,

.. math::

    y_t = \hat{y}_{t|t-1} + e_t,

in the multiplicative error model,

.. math::

    y_t = \hat{y}_{t|t-1}\cdot (1 + e_t).

Using these error models, it is possible to formulate state space equations for
the ETS models:

.. math::

   y_t &= Y_t + \eta \cdot e_t\\
   l_t &= L_t + \alpha \cdot (M_e \cdot L_t + \kappa_l) \cdot e_t\\
   b_t &= B_t + \beta \cdot (M_e \cdot B_t + \kappa_b) \cdot e_t\\
   s_t &= S_t + \gamma \cdot (M_e \cdot S_t+\kappa_s)\cdot e_t\\

with

.. math::

   B_t &= b_{t-1} \circ_d \phi\\
   L_t &= l_{t-1} \circ_b B_t\\
   S_t &= s_{t-m}\\
   Y_t &= L_t \circ_s S_t,

and

.. math::

   \eta &= \begin{cases}
               Y_t\quad\text{if error is multiplicative}\\
               1\quad\text{else}
           \end{cases}\\
   M_e &= \begin{cases}
               1\quad\text{if error is multiplicative}\\
               0\quad\text{else}
           \end{cases}\\

and, when using the additive error model,

.. math::

   \kappa_l &= \begin{cases}
               \frac{1}{S_t}\quad
               \text{if seasonality is multiplicative}\\
               1\quad\text{else}
           \end{cases}\\
   \kappa_b &= \begin{cases}
               \frac{\kappa_l}{l_{t-1}}\quad
               \text{if trend is multiplicative}\\
               \kappa_l\quad\text{else}
           \end{cases}\\
   \kappa_s &= \begin{cases}
               \frac{1}{L_t}\quad\text{if seasonality is multiplicative}\\
               1\quad\text{else}
           \end{cases}

When using the multiplicative error model

.. math::

   \kappa_l &= \begin{cases}
               0\quad
               \text{if seasonality is multiplicative}\\
               S_t\quad\text{else}
           \end{cases}\\
   \kappa_b &= \begin{cases}
               \frac{\kappa_l}{l_{t-1}}\quad
               \text{if trend is multiplicative}\\
               \kappa_l + l_{t-1}\quad\text{else}
           \end{cases}\\
   \kappa_s &= \begin{cases}
               0\quad\text{if seasonality is multiplicative}\\
               L_t\quad\text{else}
           \end{cases}

When fitting an ETS model, the parameters :math:`\alpha, \beta`, \gamma,
\phi` and the initial states `l_{-1}, b_{-1}, s_{-1}, \ldots, s_{-m}` are
selected as maximizers of log likelihood.

References
----------
.. [1] Hyndman, R.J., & Athanasopoulos, G. (2019) *Forecasting:
   principles and practice*, 3rd edition, OTexts: Melbourne,
   Australia. OTexts.com/fpp3. Accessed on April 19th 2020.
"""

from collections import OrderedDict
import contextlib
import datetime as dt

import numpy as np
import pandas as pd
from scipy.stats import norm, rv_continuous, rv_discrete
from scipy.stats.distributions import rv_frozen

from statsmodels.base.covtype import descriptions
import statsmodels.base.wrapper as wrap
from statsmodels.iolib.summary import forg
from statsmodels.iolib.table import SimpleTable
from statsmodels.iolib.tableformatting import fmt_params
from statsmodels.tools.decorators import cache_readonly
from statsmodels.tools.tools import Bunch
from statsmodels.tools.validation import (
    array_like,
    bool_like,
    int_like,
    string_like,
)
import statsmodels.tsa.base.tsa_model as tsbase
from statsmodels.tsa.exponential_smoothing import base
import statsmodels.tsa.exponential_smoothing._ets_smooth as smooth
from statsmodels.tsa.exponential_smoothing.initialization import (
    _initialization_simple,
    _initialization_heuristic,
)
from statsmodels.tsa.tsatools import freq_to_period

# Implementation details:

# * The smoothing equations are implemented only for models having all
#   components (trend, dampening, seasonality). When using other models, the
#   respective parameters (smoothing and initial parameters) are set to values
#   that lead to the reduced model (often zero).
#   The internal model is needed for smoothing (called from fit and loglike),
#   forecasts, and simulations.
# * Somewhat related to above: There are 2 sets of parameters: model/external
#   params, and internal params.
#   - model params are all parameters necessary for a model, and are for
#     example passed as argument to the likelihood function or as start_params
#     to fit
#   - internal params are what is used internally in the smoothing equations
# * Regarding fitting, bounds, fixing parameters, and internal parameters, the
#   overall workflow is the following:
#   - get start parameters in the form of external parameters (includes fixed
#     parameters)
#   - transform external parameters to internal parameters, bounding all that
#     are missing -> now we have some missing parameters, but potentially also
#     some user-specified bounds
#   - set bounds for fixed parameters
#   - make sure that starting parameters are within bounds
#   - set up the constraint bounds and function
# * Since the traditional bounds are nonlinear for beta and gamma, if no bounds
#   are given, we internally use beta_star and gamma_star for fitting
# * When estimating initial level and initial seasonal values, one of them has
#   to be removed in order to have a well posed problem. I am solving this by
#   fixing the last initial seasonal value to 0 (for additive seasonality) or 1
#   (for multiplicative seasonality).
#   For the additive models, this means I have to subtract the last initial
#   seasonal value from all initial seasonal values and add it to the initial
#   level; for the multiplicative models I do the same with division and
#   multiplication


[docs]class ETSModel(base.StateSpaceMLEModel): r""" ETS models. Parameters ---------- endog : array_like The observed time-series process :math:`y` error : str, optional The error model. "add" (default) or "mul". trend : str or None, optional The trend component model. "add", "mul", or None (default). damped_trend : bool, optional Whether or not an included trend component is damped. Default is False. seasonal : str, optional The seasonality model. "add", "mul", or None (default). seasonal_periods : int, optional The number of periods in a complete seasonal cycle for seasonal (Holt-Winters) models. For example, 4 for quarterly data with an annual cycle or 7 for daily data with a weekly cycle. Required if `seasonal` is not None. initialization_method : str, optional Method for initialization of the state space model. One of: * 'estimated' (default) * 'heuristic' * 'known' If 'known' initialization is used, then `initial_level` must be passed, as well as `initial_trend` and `initial_seasonal` if applicable. 'heuristic' uses a heuristic based on the data to estimate initial level, trend, and seasonal state. 'estimated' uses the same heuristic as initial guesses, but then estimates the initial states as part of the fitting process. Default is 'estimated'. initial_level : float, optional The initial level component. Only used if initialization is 'known'. initial_trend : float, optional The initial trend component. Only used if initialization is 'known'. initial_seasonal : array_like, optional The initial seasonal component. An array of length `seasonal_periods`. Only used if initialization is 'known'. bounds : dict or None, optional A dictionary with parameter names as keys and the respective bounds intervals as values (lists/tuples/arrays). The available parameter names are, depending on the model and initialization method: * "smoothing_level" * "smoothing_trend" * "smoothing_seasonal" * "damping_trend" * "initial_level" * "initial_trend" * "initial_seasonal.0", ..., "initial_seasonal.<m-1>" The default option is ``None``, in which case the traditional (nonlinear) bounds as described in [1]_ are used. Notes ----- The ETS models are a family of time series models. They can be seen as a generalization of simple exponential smoothing to time series that contain trends and seasonalities. Additionally, they have an underlying state space model. An ETS model is specified by an error type (E; additive or multiplicative), a trend type (T; additive or multiplicative, both damped or undamped, or none), and a seasonality type (S; additive or multiplicative or none). The following gives a very short summary, a more thorough introduction can be found in [1]_. Denote with :math:`\circ_b` the trend operation (addition or multiplication), with :math:`\circ_d` the operation linking trend and dampening factor :math:`\phi` (multiplication if trend is additive, power if trend is multiplicative), and with :math:`\circ_s` the seasonality operation (addition or multiplication). Furthermore, let :math:`\ominus` be the respective inverse operation (subtraction or division). With this, it is possible to formulate the ETS models as a forecast equation and 3 smoothing equations. The former is used to forecast observations, the latter are used to update the internal state. .. math:: \hat{y}_{t|t-1} &= (l_{t-1} \circ_b (b_{t-1}\circ_d \phi)) \circ_s s_{t-m}\\ l_{t} &= \alpha (y_{t} \ominus_s s_{t-m}) + (1 - \alpha) (l_{t-1} \circ_b (b_{t-1} \circ_d \phi))\\ b_{t} &= \beta/\alpha (l_{t} \ominus_b l_{t-1}) + (1 - \beta/\alpha) b_{t-1}\\ s_{t} &= \gamma (y_t \ominus_s (l_{t-1} \circ_b (b_{t-1}\circ_d\phi)) + (1 - \gamma) s_{t-m} The notation here follows [1]_; :math:`l_t` denotes the level at time :math:`t`, `b_t` the trend, and `s_t` the seasonal component. :math:`m` is the number of seasonal periods, and :math:`\phi` a trend damping factor. The parameters :math:`\alpha, \beta, \gamma` are the smoothing parameters, which are called ``smoothing_level``, ``smoothing_trend``, and ``smoothing_seasonal``, respectively. Note that the formulation above as forecast and smoothing equation does not distinguish different error models -- it is the same for additive and multiplicative errors. But the different error models lead to different likelihood models, and therefore will lead to different fit results. The error models specify how the true values :math:`y_t` are updated. In the additive error model, .. math:: y_t = \hat{y}_{t|t-1} + e_t, in the multiplicative error model, .. math:: y_t = \hat{y}_{t|t-1}\cdot (1 + e_t). Using these error models, it is possible to formulate state space equations for the ETS models: .. math:: y_t &= Y_t + \eta \cdot e_t\\ l_t &= L_t + \alpha \cdot (M_e \cdot L_t + \kappa_l) \cdot e_t\\ b_t &= B_t + \beta \cdot (M_e \cdot B_t + \kappa_b) \cdot e_t\\ s_t &= S_t + \gamma \cdot (M_e \cdot S_t+\kappa_s)\cdot e_t\\ with .. math:: B_t &= b_{t-1} \circ_d \phi\\ L_t &= l_{t-1} \circ_b B_t\\ S_t &= s_{t-m}\\ Y_t &= L_t \circ_s S_t, and .. math:: \eta &= \begin{cases} Y_t\quad\text{if error is multiplicative}\\ 1\quad\text{else} \end{cases}\\ M_e &= \begin{cases} 1\quad\text{if error is multiplicative}\\ 0\quad\text{else} \end{cases}\\ and, when using the additive error model, .. math:: \kappa_l &= \begin{cases} \frac{1}{S_t}\quad \text{if seasonality is multiplicative}\\ 1\quad\text{else} \end{cases}\\ \kappa_b &= \begin{cases} \frac{\kappa_l}{l_{t-1}}\quad \text{if trend is multiplicative}\\ \kappa_l\quad\text{else} \end{cases}\\ \kappa_s &= \begin{cases} \frac{1}{L_t}\quad\text{if seasonality is multiplicative}\\ 1\quad\text{else} \end{cases} When using the multiplicative error model .. math:: \kappa_l &= \begin{cases} 0\quad \text{if seasonality is multiplicative}\\ S_t\quad\text{else} \end{cases}\\ \kappa_b &= \begin{cases} \frac{\kappa_l}{l_{t-1}}\quad \text{if trend is multiplicative}\\ \kappa_l + l_{t-1}\quad\text{else} \end{cases}\\ \kappa_s &= \begin{cases} 0\quad\text{if seasonality is multiplicative}\\ L_t\quad\text{else} \end{cases} When fitting an ETS model, the parameters :math:`\alpha, \beta`, \gamma, \phi` and the initial states `l_{-1}, b_{-1}, s_{-1}, \ldots, s_{-m}` are selected as maximizers of log likelihood. References ---------- .. [1] Hyndman, R.J., & Athanasopoulos, G. (2019) *Forecasting: principles and practice*, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on April 19th 2020. """ def __init__( self, endog, error="add", trend=None, damped_trend=False, seasonal=None, seasonal_periods=None, initialization_method="estimated", initial_level=None, initial_trend=None, initial_seasonal=None, bounds=None, dates=None, freq=None, missing="none", ): super().__init__( endog, exog=None, dates=dates, freq=freq, missing=missing ) # MODEL DEFINITION # ================ options = ("add", "mul", "additive", "multiplicative") # take first three letters of option -> either "add" or "mul" self.error = string_like(error, "error", options=options)[:3] self.trend = string_like( trend, "trend", options=options, optional=True ) if self.trend is not None: self.trend = self.trend[:3] self.damped_trend = bool_like(damped_trend, "damped_trend") self.seasonal = string_like( seasonal, "seasonal", options=options, optional=True ) if self.seasonal is not None: self.seasonal = self.seasonal[:3] self.has_trend = self.trend is not None self.has_seasonal = self.seasonal is not None if self.has_seasonal: self.seasonal_periods = int_like( seasonal_periods, "seasonal_periods", optional=True ) if seasonal_periods is None: self.seasonal_periods = freq_to_period(self._index_freq) if self.seasonal_periods <= 1: raise ValueError("seasonal_periods must be larger than 1.") else: # in case the model has no seasonal component, we internally handle # this as if it had an additive seasonal component with # seasonal_periods=1, but restrict the smoothing parameter to 0 and # set the initial seasonal to 0. self.seasonal_periods = 1 # reject invalid models if np.any(self.endog <= 0) and ( self.error == "mul" or self.trend == "mul" or self.seasonal == "mul" ): raise ValueError( "endog must be strictly positive when using " "multiplicative error, trend or seasonal components." ) if self.damped_trend and not self.has_trend: raise ValueError("Can only dampen the trend component") # INITIALIZATION METHOD # ===================== self.set_initialization_method( initialization_method, initial_level, initial_trend, initial_seasonal, ) # BOUNDS # ====== self.set_bounds(bounds) # SMOOTHER # ======== if self.trend == "add" or self.trend is None: if self.seasonal == "add" or self.seasonal is None: self._smoothing_func = smooth._ets_smooth_add_add else: self._smoothing_func = smooth._ets_smooth_add_mul else: if self.seasonal == "add" or self.seasonal is None: self._smoothing_func = smooth._ets_smooth_mul_add else: self._smoothing_func = smooth._ets_smooth_mul_mul
[docs] def set_initialization_method( self, initialization_method, initial_level=None, initial_trend=None, initial_seasonal=None, ): """ Sets a new initialization method for the state space model. Parameters ---------- initialization_method : str, optional Method for initialization of the state space model. One of: * 'estimated' (default) * 'heuristic' * 'known' If 'known' initialization is used, then `initial_level` must be passed, as well as `initial_trend` and `initial_seasonal` if applicable. 'heuristic' uses a heuristic based on the data to estimate initial level, trend, and seasonal state. 'estimated' uses the same heuristic as initial guesses, but then estimates the initial states as part of the fitting process. Default is 'estimated'. initial_level : float, optional The initial level component. Only used if initialization is 'known'. initial_trend : float, optional The initial trend component. Only used if initialization is 'known'. initial_seasonal : array_like, optional The initial seasonal component. An array of length `seasonal_periods`. Only used if initialization is 'known'. """ self.initialization_method = string_like( initialization_method, "initialization_method", options=("estimated", "known", "heuristic"), ) if self.initialization_method == "known": if initial_level is None: raise ValueError( "`initial_level` argument must be provided" ' when initialization method is set to "known".' ) if self.has_trend and initial_trend is None: raise ValueError( "`initial_trend` argument must be provided" " for models with a trend component when" ' initialization method is set to "known".' ) if self.has_seasonal and initial_seasonal is None: raise ValueError( "`initial_seasonal` argument must be provided" " for models with a seasonal component when" ' initialization method is set to "known".' ) elif self.initialization_method == "heuristic": ( initial_level, initial_trend, initial_seasonal, ) = _initialization_heuristic( self.endog, trend=self.trend, seasonal=self.seasonal, seasonal_periods=self.seasonal_periods, ) elif self.initialization_method == "estimated": if self.nobs < 10 + 2 * (self.seasonal_periods // 2): ( initial_level, initial_trend, initial_seasonal, ) = _initialization_simple( self.endog, trend=self.trend, seasonal=self.seasonal, seasonal_periods=self.seasonal_periods, ) else: ( initial_level, initial_trend, initial_seasonal, ) = _initialization_heuristic( self.endog, trend=self.trend, seasonal=self.seasonal, seasonal_periods=self.seasonal_periods, ) if not self.has_trend: initial_trend = 0 if not self.has_seasonal: initial_seasonal = 0 self.initial_level = initial_level self.initial_trend = initial_trend self.initial_seasonal = initial_seasonal # we also have to reset the params index dictionaries self._internal_params_index = OrderedDict( zip(self._internal_param_names, np.arange(self._k_params_internal)) ) self._params_index = OrderedDict( zip(self.param_names, np.arange(self.k_params)) )
[docs] def set_bounds(self, bounds): """ Set bounds for parameter estimation. Parameters ---------- bounds : dict or None, optional A dictionary with parameter names as keys and the respective bounds intervals as values (lists/tuples/arrays). The available parameter names are in ``self.param_names``. The default option is ``None``, in which case the traditional (nonlinear) bounds as described in [1]_ are used. References ---------- .. [1] Hyndman, R.J., & Athanasopoulos, G. (2019) *Forecasting: principles and practice*, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on April 19th 2020. """ if bounds is None: self.bounds = {} else: if not isinstance(bounds, (dict, OrderedDict)): raise ValueError("bounds must be a dictionary") for key in bounds: if key not in self.param_names: raise ValueError( f"Invalid key: {key} in bounds dictionary" ) bounds[key] = array_like( bounds[key], f"bounds[{key}]", shape=(2,) ) self.bounds = bounds
[docs] @staticmethod def prepare_data(data): """ Prepare data for use in the state space representation """ endog = np.array(data.orig_endog, order="C") if endog.ndim != 1: raise ValueError("endog must be 1-dimensional") if endog.dtype != np.double: endog = np.asarray(data.orig_endog, order="C", dtype=float) return endog, None
@property def nobs_effective(self): return self.nobs @property def k_endog(self): return 1 @property def short_name(self): name = "".join( [ str(s)[0].upper() for s in [self.error, self.trend, self.seasonal] ] ) if self.damped_trend: name = name[0:2] + "d" + name[2] return name @property def _param_names(self): param_names = ["smoothing_level"] if self.has_trend: param_names += ["smoothing_trend"] if self.has_seasonal: param_names += ["smoothing_seasonal"] if self.damped_trend: param_names += ["damping_trend"] # Initialization if self.initialization_method == "estimated": param_names += ["initial_level"] if self.has_trend: param_names += ["initial_trend"] if self.has_seasonal: param_names += [ f"initial_seasonal.{i}" for i in range(self.seasonal_periods) ] return param_names @property def state_names(self): names = ["level"] if self.has_trend: names += ["trend"] if self.has_seasonal: names += ["seasonal"] return names @property def initial_state_names(self): names = ["initial_level"] if self.has_trend: names += ["initial_trend"] if self.has_seasonal: names += [ f"initial_seasonal.{i}" for i in range(self.seasonal_periods) ] return names @property def _smoothing_param_names(self): return [ "smoothing_level", "smoothing_trend", "smoothing_seasonal", "damping_trend", ] @property def _internal_initial_state_names(self): param_names = [ "initial_level", "initial_trend", ] param_names += [ f"initial_seasonal.{i}" for i in range(self.seasonal_periods) ] return param_names @property def _internal_param_names(self): return self._smoothing_param_names + self._internal_initial_state_names @property def _k_states(self): return 1 + int(self.has_trend) + int(self.has_seasonal) # level @property def _k_states_internal(self): return 2 + self.seasonal_periods @property def _k_smoothing_params(self): return self._k_states + int(self.damped_trend) @property def _k_initial_states(self): return ( 1 + int(self.has_trend) + +int(self.has_seasonal) * self.seasonal_periods ) @property def k_params(self): k = self._k_smoothing_params if self.initialization_method == "estimated": k += self._k_initial_states return k @property def _k_params_internal(self): return 4 + 2 + self.seasonal_periods def _internal_params(self, params): """ Converts a parameter array passed from outside to the internally used full parameter array. """ # internal params that are not needed are all set to zero, except phi, # which is one internal = np.zeros(self._k_params_internal, dtype=params.dtype) for i, name in enumerate(self.param_names): internal_idx = self._internal_params_index[name] internal[internal_idx] = params[i] if not self.damped_trend: internal[3] = 1 # phi is 4th parameter if self.initialization_method != "estimated": internal[4] = self.initial_level internal[5] = self.initial_trend if np.isscalar(self.initial_seasonal): internal[6:] = self.initial_seasonal else: # See GH 7893 internal[6:] = self.initial_seasonal[::-1] return internal def _model_params(self, internal): """ Converts internal parameters to model parameters """ params = np.empty(self.k_params) for i, name in enumerate(self.param_names): internal_idx = self._internal_params_index[name] params[i] = internal[internal_idx] return params @property def _seasonal_index(self): return 1 + int(self.has_trend) def _get_states(self, xhat): states = np.empty((self.nobs, self._k_states)) all_names = ["level", "trend", "seasonal"] for i, name in enumerate(self.state_names): idx = all_names.index(name) states[:, i] = xhat[:, idx] return states def _get_internal_states(self, states, params): """ Converts a state matrix/dataframe to the (nobs, 2+m) matrix used internally """ internal_params = self._internal_params(params) if isinstance(states, (pd.Series, pd.DataFrame)): states = states.values internal_states = np.zeros((self.nobs, 2 + self.seasonal_periods)) internal_states[:, 0] = states[:, 0] if self.has_trend: internal_states[:, 1] = states[:, 1] if self.has_seasonal: for j in range(self.seasonal_periods): internal_states[j:, 2 + j] = states[ 0 : self.nobs - j, self._seasonal_index ] internal_states[0:j, 2 + j] = internal_params[6 : 6 + j][::-1] return internal_states @property def _default_start_params(self): return { "smoothing_level": 0.1, "smoothing_trend": 0.01, "smoothing_seasonal": 0.01, "damping_trend": 0.98, } @property def _start_params(self): """ Default start params in the format of external parameters. This should not be called directly, but by calling ``self.start_params``. """ params = [] for p in self._smoothing_param_names: if p in self.param_names: params.append(self._default_start_params[p]) if self.initialization_method == "estimated": lvl_idx = len(params) params += [self.initial_level] if self.has_trend: params += [self.initial_trend] if self.has_seasonal: # we have to adapt the seasonal values a bit to make sure the # problem is well posed (see implementation notes above) initial_seasonal = self.initial_seasonal if self.seasonal == "mul": params[lvl_idx] *= initial_seasonal[-1] initial_seasonal /= initial_seasonal[-1] else: params[lvl_idx] += initial_seasonal[-1] initial_seasonal -= initial_seasonal[-1] params += initial_seasonal.tolist() return np.array(params) def _convert_and_bound_start_params(self, params): """ This converts start params to internal params, sets internal-only parameters as bounded, sets bounds for fixed parameters, and then makes sure that all start parameters are within the specified bounds. """ internal_params = self._internal_params(params) # set bounds for missing and fixed for p in self._internal_param_names: idx = self._internal_params_index[p] if p not in self.param_names: # any missing parameters are set to the value they got from the # call to _internal_params self.bounds[p] = [internal_params[idx]] * 2 elif self._has_fixed_params and p in self._fixed_params: self.bounds[p] = [self._fixed_params[p]] * 2 # make sure everything is within bounds if p in self.bounds: internal_params[idx] = np.clip( internal_params[idx] + 1e-3, # try not to start on boundary *self.bounds[p], ) return internal_params def _setup_bounds(self): # By default, we are using the traditional constraints for the # smoothing parameters if nothing else is specified # # 0 < alpha < 1 # 0 < beta/alpha < 1 # 0 < gamma + alpha < 1 # 0.8 < phi < 0.98 # # For initial states, no bounds are the default setting. # # Since the bounds for beta and gamma are not in the simple form of a # constant interval, we will use the parameters beta_star=beta/alpha # and gamma_star=gamma+alpha during fitting. lb = np.zeros(self._k_params_internal) + 1e-4 ub = np.ones(self._k_params_internal) - 1e-4 # other bounds for phi and initial states lb[3], ub[3] = 0.8, 0.98 if self.initialization_method == "estimated": lb[4:-1] = -np.inf ub[4:-1] = np.inf # fix the last initial_seasonal to 0 or 1, otherwise the equation # is underdetermined if self.seasonal == "mul": lb[-1], ub[-1] = 1, 1 else: lb[-1], ub[-1] = 0, 0 # set lb and ub for parameters with bounds for p in self._internal_param_names: idx = self._internal_params_index[p] if p in self.bounds: lb[idx], ub[idx] = self.bounds[p] return [(lb[i], ub[i]) for i in range(self._k_params_internal)]
[docs] def fit( self, start_params=None, maxiter=1000, full_output=True, disp=True, callback=None, return_params=False, **kwargs, ): r""" Fit an ETS model by maximizing log-likelihood. Log-likelihood is a function of the model parameters :math:`\alpha, \beta, \gamma, \phi` (depending on the chosen model), and, if `initialization_method` was set to `'estimated'` in the constructor, also the initial states :math:`l_{-1}, b_{-1}, s_{-1}, \ldots, s_{-m}`. The fit is performed using the L-BFGS algorithm. Parameters ---------- start_params : array_like, optional Initial values for parameters that will be optimized. If this is ``None``, default values will be used. The length of this depends on the chosen model. This should contain the parameters in the following order, skipping parameters that do not exist in the chosen model. * `smoothing_level` (:math:`\alpha`) * `smoothing_trend` (:math:`\beta`) * `smoothing_seasonal` (:math:`\gamma`) * `damping_trend` (:math:`\phi`) If ``initialization_method`` was set to ``'estimated'`` (the default), additionally, the parameters * `initial_level` (:math:`l_{-1}`) * `initial_trend` (:math:`l_{-1}`) * `initial_seasonal.0` (:math:`s_{-1}`) * ... * `initial_seasonal.<m-1>` (:math:`s_{-m}`) also have to be specified. maxiter : int, optional The maximum number of iterations to perform. full_output : bool, optional Set to True to have all available output in the Results object's mle_retvals attribute. The output is dependent on the solver. See LikelihoodModelResults notes section for more information. disp : bool, optional Set to True to print convergence messages. callback : callable callback(xk), optional Called after each iteration, as callback(xk), where xk is the current parameter vector. return_params : bool, optional Whether or not to return only the array of maximizing parameters. Default is False. **kwargs Additional keyword arguments to pass to the optimizer. Returns ------- results : ETSResults """ if start_params is None: start_params = self.start_params else: start_params = np.asarray(start_params) if self._has_fixed_params and len(self._free_params_index) == 0: final_params = np.asarray(list(self._fixed_params.values())) mlefit = Bunch( params=start_params, mle_retvals=None, mle_settings=None ) else: internal_start_params = self._convert_and_bound_start_params( start_params ) bounds = self._setup_bounds() # check if we need to use the starred parameters use_beta_star = "smoothing_trend" not in self.bounds if use_beta_star: internal_start_params[1] /= internal_start_params[0] use_gamma_star = "smoothing_seasonal" not in self.bounds if use_gamma_star: internal_start_params[2] /= 1 - internal_start_params[0] # check if we have fixed parameters and remove them from the # parameter vector is_fixed = np.zeros(self._k_params_internal, dtype=int) fixed_values = np.empty_like(internal_start_params) params_without_fixed = [] kwargs["bounds"] = [] for i in range(self._k_params_internal): if bounds[i][0] == bounds[i][1]: is_fixed[i] = True fixed_values[i] = bounds[i][0] else: params_without_fixed.append(internal_start_params[i]) kwargs["bounds"].append(bounds[i]) params_without_fixed = np.asarray(params_without_fixed) # pre-allocate memory for smoothing results yhat = np.zeros(self.nobs) xhat = np.zeros((self.nobs, self._k_states_internal)) kwargs["approx_grad"] = True with self.use_internal_loglike(): mlefit = super().fit( params_without_fixed, fargs=( yhat, xhat, is_fixed, fixed_values, use_beta_star, use_gamma_star, ), method="lbfgs", maxiter=maxiter, full_output=full_output, disp=disp, callback=callback, skip_hessian=True, **kwargs, ) # convert params back # first, insert fixed params fitted_params = np.empty_like(internal_start_params) idx_without_fixed = 0 for i in range(self._k_params_internal): if is_fixed[i]: fitted_params[i] = fixed_values[i] else: fitted_params[i] = mlefit.params[idx_without_fixed] idx_without_fixed += 1 if use_beta_star: fitted_params[1] *= fitted_params[0] if use_gamma_star: fitted_params[2] *= 1 - fitted_params[0] final_params = self._model_params(fitted_params) if return_params: return final_params else: result = self.smooth(final_params) result.mlefit = mlefit result.mle_retvals = mlefit.mle_retvals result.mle_settings = mlefit.mle_settings return result
def _loglike_internal( self, params, yhat, xhat, is_fixed=None, fixed_values=None, use_beta_star=False, use_gamma_star=False, ): """ Log-likelihood function to be called from fit to avoid reallocation of memory. Parameters ---------- params : np.ndarray of np.float Model parameters: (alpha, beta, gamma, phi, l[-1], b[-1], s[-1], ..., s[-m]). If there are no fixed values this must be in the format of internal parameters. Otherwise the fixed values are skipped. yhat : np.ndarray Array of size (n,) where fitted values will be written to. xhat : np.ndarray Array of size (n, _k_states_internal) where fitted states will be written to. is_fixed : np.ndarray or None Boolean array indicating values which are fixed during fitting. This must have the full length of internal parameters. fixed_values : np.ndarray or None Array of fixed values (arbitrary values for non-fixed parameters) This must have the full length of internal parameters. use_beta_star : boolean Whether to internally use beta_star as parameter use_gamma_star : boolean Whether to internally use gamma_star as parameter """ if np.iscomplexobj(params): data = np.asarray(self.endog, dtype=complex) else: data = self.endog if is_fixed is None: is_fixed = np.zeros(self._k_params_internal, dtype=int) fixed_values = np.empty( self._k_params_internal, dtype=params.dtype ) self._smoothing_func( params, data, yhat, xhat, is_fixed, fixed_values, use_beta_star, use_gamma_star, ) res = self._residuals(yhat, data=data) logL = -self.nobs / 2 * (np.log(2 * np.pi * np.mean(res ** 2)) + 1) if self.error == "mul": # GH-7331: in some cases, yhat can become negative, so that a # multiplicative model is no longer well-defined. To avoid these # parameterizations, we clip negative values to very small positive # values so that the log-transformation yields very large negative # values. yhat[yhat <= 0] = 1 / (1e-8 * (1 + np.abs(yhat[yhat < 0]))) logL -= np.sum(np.log(yhat)) return logL
[docs] @contextlib.contextmanager def use_internal_loglike(self): external_loglike = self.loglike self.loglike = self._loglike_internal try: yield finally: self.loglike = external_loglike
[docs] def loglike(self, params, **kwargs): r""" Log-likelihood of model. Parameters ---------- params : np.ndarray of np.float Model parameters: (alpha, beta, gamma, phi, l[-1], b[-1], s[-1], ..., s[-m]) Notes ----- The log-likelihood of a exponential smoothing model is [1]_: .. math:: l(\theta, x_0|y) = - \frac{n}{2}(\log(2\pi s^2) + 1) - \sum\limits_{t=1}^n \log(k_t) with .. math:: s^2 = \frac{1}{n}\sum\limits_{t=1}^n \frac{(\hat{y}_t - y_t)^2}{k_t} where :math:`k_t = 1` for the additive error model and :math:`k_t = y_t` for the multiplicative error model. References ---------- .. [1] J. K. Ord, A. B. Koehler R. D. and Snyder (1997). Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models. *Journal of the American Statistical Association*, 92(440), 1621-1629 """ params = self._internal_params(np.asarray(params)) yhat = np.zeros(self.nobs, dtype=params.dtype) xhat = np.zeros( (self.nobs, self._k_states_internal), dtype=params.dtype ) return self._loglike_internal(np.asarray(params), yhat, xhat)
def _residuals(self, yhat, data=None): """Calculates residuals of a prediction""" if data is None: data = self.endog if self.error == "mul": return (data - yhat) / yhat else: return data - yhat def _smooth(self, params): """ Exponential smoothing with given parameters Parameters ---------- params : array_like Model parameters Returns ------- yhat : pd.Series or np.ndarray Predicted values from exponential smoothing. If original data was a ``pd.Series``, returns a ``pd.Series``, else a ``np.ndarray``. xhat : pd.DataFrame or np.ndarray Internal states of exponential smoothing. If original data was a ``pd.Series``, returns a ``pd.DataFrame``, else a ``np.ndarray``. """ internal_params = self._internal_params(params) yhat = np.zeros(self.nobs) xhat = np.zeros((self.nobs, self._k_states_internal)) is_fixed = np.zeros(self._k_params_internal, dtype=int) fixed_values = np.empty(self._k_params_internal, dtype=params.dtype) self._smoothing_func( internal_params, self.endog, yhat, xhat, is_fixed, fixed_values ) # remove states that are only internal states = self._get_states(xhat) if self.use_pandas: _, _, _, index = self._get_prediction_index(0, self.nobs - 1) yhat = pd.Series(yhat, index=index) statenames = ["level"] if self.has_trend: statenames += ["trend"] if self.has_seasonal: statenames += ["seasonal"] states = pd.DataFrame(states, index=index, columns=statenames) return yhat, states
[docs] def smooth(self, params, return_raw=False): """ Exponential smoothing with given parameters Parameters ---------- params : array_like Model parameters return_raw : bool, optional Whether to return only the state space results or the full results object. Default is ``False``. Returns ------- result : ETSResultsWrapper or tuple If ``return_raw=False``, returns a ETSResultsWrapper object. Otherwise a tuple of arrays or pandas objects, depending on the format of the endog data. """ params = np.asarray(params) results = self._smooth(params) return self._wrap_results(params, results, return_raw)
@property def _res_classes(self): return {"fit": (ETSResults, ETSResultsWrapper)}
[docs] def hessian( self, params, approx_centered=False, approx_complex_step=True, **kwargs ): r""" Hessian matrix of the likelihood function, evaluated at the given parameters Parameters ---------- params : array_like Array of parameters at which to evaluate the hessian. approx_centered : bool Whether to use a centered scheme for finite difference approximation approx_complex_step : bool Whether to use complex step differentiation for approximation Returns ------- hessian : ndarray Hessian matrix evaluated at `params` Notes ----- This is a numerical approximation. """ method = kwargs.get("method", "approx") if method == "approx": if approx_complex_step: hessian = self._hessian_complex_step(params, **kwargs) else: hessian = self._hessian_finite_difference( params, approx_centered=approx_centered, **kwargs ) else: raise NotImplementedError("Invalid Hessian calculation method.") return hessian
[docs] def score( self, params, approx_centered=False, approx_complex_step=True, **kwargs ): method = kwargs.get("method", "approx") if method == "approx": if approx_complex_step: score = self._score_complex_step(params, **kwargs) else: score = self._score_finite_difference( params, approx_centered=approx_centered, **kwargs ) else: raise NotImplementedError("Invalid score method.") return score
[docs] def update(params, *args, **kwargs): # Dummy method to make methods copied from statespace.MLEModel work ...
[docs]class ETSResults(base.StateSpaceMLEResults): """ Results from an error, trend, seasonal (ETS) exponential smoothing model """ def __init__(self, model, params, results): yhat, xhat = results self._llf = model.loglike(params) self._residuals = model._residuals(yhat) self._fittedvalues = yhat # scale is concentrated in this model formulation and corresponds to # mean squared residuals, see docstring of model.loglike scale = np.mean(self._residuals ** 2) super().__init__(model, params, scale=scale) # get model definition model_definition_attrs = [ "short_name", "error", "trend", "seasonal", "damped_trend", "has_trend", "has_seasonal", "seasonal_periods", "initialization_method", ] for attr in model_definition_attrs: setattr(self, attr, getattr(model, attr)) self.param_names = [ "%s (fixed)" % name if name in self.fixed_params else name for name in (self.model.param_names or []) ] # get fitted states and parameters internal_params = self.model._internal_params(params) self.states = xhat if self.model.use_pandas: states = self.states.iloc else: states = self.states self.initial_state = np.zeros(model._k_initial_states) self.level = states[:, 0] self.initial_level = internal_params[4] self.initial_state[0] = self.initial_level self.alpha = self.params[0] self.smoothing_level = self.alpha if self.has_trend: self.slope = states[:, 1] self.initial_trend = internal_params[5] self.initial_state[1] = self.initial_trend self.beta = self.params[1] self.smoothing_trend = self.beta if self.has_seasonal: self.season = states[:, self.model._seasonal_index] # See GH 7893 self.initial_seasonal = internal_params[6:][::-1] self.initial_state[ self.model._seasonal_index : ] = self.initial_seasonal self.gamma = self.params[self.model._seasonal_index] self.smoothing_seasonal = self.gamma if self.damped_trend: self.phi = internal_params[3] self.damping_trend = self.phi # degrees of freedom of model k_free_params = self.k_params - len(self.fixed_params) self.df_model = k_free_params + 1 # standardized forecasting error self.mean_resid = np.mean(self.resid) self.scale_resid = np.std(self.resid, ddof=1) self.standardized_forecasts_error = ( self.resid - self.mean_resid ) / self.scale_resid # Setup covariance matrix notes dictionary # For now, only support "approx" if not hasattr(self, "cov_kwds"): self.cov_kwds = {} self.cov_type = "approx" # Setup the cache self._cache = {} # Handle covariance matrix calculation self._cov_approx_complex_step = True self._cov_approx_centered = False approx_type_str = "complex-step" try: self._rank = None if self.k_params == 0: self.cov_params_default = np.zeros((0, 0)) self._rank = 0 self.cov_kwds["description"] = "No parameters estimated." else: self.cov_params_default = self.cov_params_approx self.cov_kwds["description"] = descriptions["approx"].format( approx_type=approx_type_str ) except np.linalg.LinAlgError: self._rank = 0 k_params = len(self.params) self.cov_params_default = np.zeros((k_params, k_params)) * np.nan self.cov_kwds["cov_type"] = ( "Covariance matrix could not be calculated: singular." " information matrix." ) @cache_readonly def nobs_effective(self): return self.nobs @cache_readonly def fittedvalues(self): return self._fittedvalues @cache_readonly def resid(self): return self._residuals @cache_readonly def llf(self): """ log-likelihood function evaluated at the fitted params """ return self._llf def _get_prediction_params(self, start_idx): """ Returns internal parameter representation of smoothing parameters and "initial" states for prediction/simulation, that is the states just before the first prediction/simulation step. """ internal_params = self.model._internal_params(self.params) if start_idx == 0: return internal_params else: internal_states = self.model._get_internal_states( self.states, self.params ) start_state = np.empty(6 + self.seasonal_periods) start_state[0:4] = internal_params[0:4] start_state[4:] = internal_states[start_idx - 1, :] return start_state def _relative_forecast_variance(self, steps): """ References ---------- .. [1] Hyndman, R.J., & Athanasopoulos, G. (2019) *Forecasting: principles and practice*, 3rd edition, OTexts: Melbourne, Australia. OTexts.com/fpp3. Accessed on April 19th 2020. """ h = steps alpha = self.smoothing_level if self.has_trend: beta = self.smoothing_trend if self.has_seasonal: gamma = self.smoothing_seasonal m = self.seasonal_periods k = np.asarray((h - 1) / m, dtype=int) if self.damped_trend: phi = self.damping_trend model = self.model.short_name if model == "ANN": return 1 + alpha ** 2 * (h - 1) elif model == "AAN": return 1 + (h - 1) * ( alpha ** 2 + alpha * beta * h + beta ** 2 * h / 6 * (2 * h - 1) ) elif model == "AAdN": return ( 1 + alpha ** 2 * (h - 1) + ( (beta * phi * h) / ((1 - phi) ** 2) * (2 * alpha * (1 - phi) + beta * phi) ) - ( (beta * phi * (1 - phi ** h)) / ((1 - phi) ** 2 * (1 - phi ** 2)) * ( 2 * alpha * (1 - phi ** 2) + beta * phi * (1 + 2 * phi - phi ** h) ) ) ) elif model == "ANA": return 1 + alpha ** 2 * (h - 1) + gamma * k * (2 * alpha + gamma) elif model == "AAA": return ( 1 + (h - 1) * ( alpha ** 2 + alpha * beta * h + (beta ** 2) / 6 * h * (2 * h - 1) ) + gamma * k * (2 * alpha + gamma + beta * m * (k + 1)) ) elif model == "AAdA": return ( 1 + alpha ** 2 * (h - 1) + gamma * k * (2 * alpha + gamma) + (beta * phi * h) / ((1 - phi) ** 2) * (2 * alpha * (1 - phi) + beta * phi) - ( (beta * phi * (1 - phi ** h)) / ((1 - phi) ** 2 * (1 - phi ** 2)) * ( 2 * alpha * (1 - phi ** 2) + beta * phi * (1 + 2 * phi - phi ** h) ) ) + ( (2 * beta * gamma * phi) / ((1 - phi) * (1 - phi ** m)) * (k * (1 - phi ** m) - phi ** m * (1 - phi ** (m * k))) ) ) else: raise NotImplementedError
[docs] def simulate( self, nsimulations, anchor=None, repetitions=1, random_errors=None, random_state=None, ): r""" Random simulations using the state space formulation. Parameters ---------- nsimulations : int The number of simulation steps. anchor : int, str, or datetime, optional First period for simulation. The simulation will be conditional on all existing datapoints prior to the `anchor`. Type depends on the index of the given `endog` in the model. Two special cases are the strings 'start' and 'end'. `start` refers to beginning the simulation at the first period of the sample (i.e. using the initial values as simulation anchor), and `end` refers to beginning the simulation at the first period after the sample. Integer values can run from 0 to `nobs`, or can be negative to apply negative indexing. Finally, if a date/time index was provided to the model, then this argument can be a date string to parse or a datetime type. Default is 'start'. Note: `anchor` corresponds to the observation right before the `start` observation in the `predict` method. repetitions : int, optional Number of simulated paths to generate. Default is 1 simulated path. random_errors : optional Specifies how the random errors should be obtained. Can be one of the following: * ``None``: Random normally distributed values with variance estimated from the fit errors drawn from numpy's standard RNG (can be seeded with the `random_state` argument). This is the default option. * A distribution function from ``scipy.stats``, e.g. ``scipy.stats.norm``: Fits the distribution function to the fit errors and draws from the fitted distribution. Note the difference between ``scipy.stats.norm`` and ``scipy.stats.norm()``, the latter one is a frozen distribution function. * A frozen distribution function from ``scipy.stats``, e.g. ``scipy.stats.norm(scale=2)``: Draws from the frozen distribution function. * A ``np.ndarray`` with shape (`nsimulations`, `repetitions`): Uses the given values as random errors. * ``"bootstrap"``: Samples the random errors from the fit errors. random_state : int or np.random.RandomState, optional A seed for the random number generator or a ``np.random.RandomState`` object. Only used if `random_errors` is ``None``. Default is ``None``. Returns ------- sim : pd.Series, pd.DataFrame or np.ndarray An ``np.ndarray``, ``pd.Series``, or ``pd.DataFrame`` of simulated values. If the original data was a ``pd.Series`` or ``pd.DataFrame``, `sim` will be a ``pd.Series`` if `repetitions` is 1, and a ``pd.DataFrame`` of shape (`nsimulations`, `repetitions`) else. Otherwise, if `repetitions` is 1, a ``np.ndarray`` of shape (`nsimulations`,) is returned, and if `repetitions` is not 1 a ``np.ndarray`` of shape (`nsimulations`, `repetitions`) is returned. """ r""" Implementation notes -------------------- The simulation is based on the state space model of the Holt-Winter's methods. The state space model assumes that the true value at time :math:`t` is randomly distributed around the prediction value. If using the additive error model, this means: .. math:: y_t &= \hat{y}_{t|t-1} + e_t\\ e_t &\sim \mathcal{N}(0, \sigma^2) Using the multiplicative error model: .. math:: y_t &= \hat{y}_{t|t-1} \cdot (1 + e_t)\\ e_t &\sim \mathcal{N}(0, \sigma^2) Inserting these equations into the smoothing equation formulation leads to the state space equations. The notation used here follows [1]_. Additionally, .. math:: B_t = b_{t-1} \circ_d \phi\\ L_t = l_{t-1} \circ_b B_t\\ S_t = s_{t-m}\\ Y_t = L_t \circ_s S_t, where :math:`\circ_d` is the operation linking trend and damping parameter (multiplication if the trend is additive, power if the trend is multiplicative), :math:`\circ_b` is the operation linking level and trend (addition if the trend is additive, multiplication if the trend is multiplicative), and :math:'\circ_s` is the operation linking seasonality to the rest. The state space equations can then be formulated as .. math:: y_t = Y_t + \eta \cdot e_t\\ l_t = L_t + \alpha \cdot (M_e \cdot L_t + \kappa_l) \cdot e_t\\ b_t = B_t + \beta \cdot (M_e \cdot B_t+\kappa_b) \cdot e_t\\ s_t = S_t + \gamma \cdot (M_e \cdot S_t + \kappa_s) \cdot e_t\\ with .. math:: \eta &= \begin{cases} Y_t\quad\text{if error is multiplicative}\\ 1\quad\text{else} \end{cases}\\ M_e &= \begin{cases} 1\quad\text{if error is multiplicative}\\ 0\quad\text{else} \end{cases}\\ and, when using the additive error model, .. math:: \kappa_l &= \begin{cases} \frac{1}{S_t}\quad \text{if seasonality is multiplicative}\\ 1\quad\text{else} \end{cases}\\ \kappa_b &= \begin{cases} \frac{\kappa_l}{l_{t-1}}\quad \text{if trend is multiplicative}\\ \kappa_l\quad\text{else} \end{cases}\\ \kappa_s &= \begin{cases} \frac{1}{L_t}\quad \text{if seasonality is multiplicative}\\ 1\quad\text{else} \end{cases} When using the multiplicative error model .. math:: \kappa_l &= \begin{cases} 0\quad \text{if seasonality is multiplicative}\\ S_t\quad\text{else} \end{cases}\\ \kappa_b &= \begin{cases} \frac{\kappa_l}{l_{t-1}}\quad \text{if trend is multiplicative}\\ \kappa_l + l_{t-1}\quad\text{else} \end{cases}\\ \kappa_s &= \begin{cases} 0\quad\text{if seasonality is multiplicative}\\ L_t\quad\text{else} \end{cases} References ---------- .. [1] Hyndman, R.J., & Athanasopoulos, G. (2018) *Forecasting: principles and practice*, 2nd edition, OTexts: Melbourne, Australia. OTexts.com/fpp2. Accessed on February 28th 2020. """ # Get the starting location start_idx = self._get_prediction_start_index(anchor) # set initial values and obtain parameters start_params = self._get_prediction_params(start_idx) x = np.zeros((nsimulations, self.model._k_states_internal)) # is fixed and fixed values are dummy arguments is_fixed = np.zeros(len(start_params), dtype=int) fixed_values = np.zeros_like(start_params) ( alpha, beta_star, gamma_star, phi, m, _, ) = smooth._initialize_ets_smooth( start_params, x, is_fixed, fixed_values ) beta = alpha * beta_star gamma = (1 - alpha) * gamma_star # make x a 3 dimensional matrix: first dimension is nsimulations # (number of steps), next is number of states, innermost is repetitions nstates = x.shape[1] x = np.tile(np.reshape(x, (nsimulations, nstates, 1)), repetitions) y = np.empty((nsimulations, repetitions)) # get random error eps sigma = np.sqrt(self.scale) if isinstance(random_errors, np.ndarray): if random_errors.shape != (nsimulations, repetitions): raise ValueError( "If random is an ndarray, it must have shape " "(nsimulations, repetitions)!" ) eps = random_errors elif random_errors == "bootstrap": eps = np.random.choice( self.resid, size=(nsimulations, repetitions), replace=True ) elif random_errors is None: if random_state is None: eps = np.random.randn(nsimulations, repetitions) * sigma elif isinstance(random_state, int): rng = np.random.RandomState(random_state) eps = rng.randn(nsimulations, repetitions) * sigma elif isinstance(random_state, np.random.RandomState): eps = random_state.randn(nsimulations, repetitions) * sigma else: raise ValueError( "Argument random_state must be None, an integer, " "or an instance of np.random.RandomState" ) elif isinstance(random_errors, (rv_continuous, rv_discrete)): params = random_errors.fit(self.resid) eps = random_errors.rvs(*params, size=(nsimulations, repetitions)) elif isinstance(random_errors, rv_frozen): eps = random_errors.rvs(size=(nsimulations, repetitions)) else: raise ValueError("Argument random_errors has unexpected value!") # get model settings mul_seasonal = self.seasonal == "mul" mul_trend = self.trend == "mul" mul_error = self.error == "mul" # define trend, damping and seasonality operations if mul_trend: op_b = np.multiply op_d = np.power else: op_b = np.add op_d = np.multiply if mul_seasonal: op_s = np.multiply else: op_s = np.add # x translation: # - x[t, 0, :] is level[t] # - x[t, 1, :] is trend[t] # - x[t, 2, :] is seasonal[t] # - x[t, 3, :] is seasonal[t-1] # - x[t, 2+j, :] is seasonal[t-j] # - similarly: x[t-1, 2+m-1, :] is seasonal[t-m] for t in range(nsimulations): B = op_d(x[t - 1, 1, :], phi) L = op_b(x[t - 1, 0, :], B) S = x[t - 1, 2 + m - 1, :] Y = op_s(L, S) if self.error == "add": eta = 1 kappa_l = 1 / S if mul_seasonal else 1 kappa_b = kappa_l / x[t - 1, 0, :] if mul_trend else kappa_l kappa_s = 1 / L if mul_seasonal else 1 else: eta = Y kappa_l = 0 if mul_seasonal else S kappa_b = ( kappa_l / x[t - 1, 0, :] if mul_trend else kappa_l + x[t - 1, 0, :] ) kappa_s = 0 if mul_seasonal else L y[t, :] = Y + eta * eps[t, :] x[t, 0, :] = L + alpha * (mul_error * L + kappa_l) * eps[t, :] x[t, 1, :] = B + beta * (mul_error * B + kappa_b) * eps[t, :] x[t, 2, :] = S + gamma * (mul_error * S + kappa_s) * eps[t, :] # update seasonals by shifting previous seasonal right x[t, 3:, :] = x[t - 1, 2:-1, :] # Wrap data / squeeze where appropriate if repetitions > 1: names = ["simulation.%d" % num for num in range(repetitions)] else: names = "simulation" return self.model._wrap_data( y, start_idx, start_idx + nsimulations - 1, names=names )
[docs] def forecast(self, steps=1): """ Out-of-sample forecasts Parameters ---------- steps : int, str, or datetime, optional If an integer, the number of steps to forecast from the end of the sample. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, steps must be an integer. Default Returns ------- forecast : ndarray Array of out of sample forecasts. A (steps x k_endog) array. """ return self._forecast(steps, "end")
def _forecast(self, steps, anchor): """ Dynamic prediction/forecasting """ # forecast is the same as simulation without errors return self.simulate( steps, anchor=anchor, random_errors=np.zeros((steps, 1)) ) def _handle_prediction_index(self, start, dynamic, end, index): if start is None: start = 0 # Handle start, end, dynamic start, end, out_of_sample, _ = self.model._get_prediction_index( start, end, index ) # if end was outside of the sample, it is now the last point in the # sample if start > end + out_of_sample + 1: raise ValueError( "Prediction start cannot lie outside of the sample." ) # Handle `dynamic` if isinstance(dynamic, (str, dt.datetime, pd.Timestamp)): dynamic, _, _ = self.model._get_index_loc(dynamic) # Convert to offset relative to start dynamic = dynamic - start elif isinstance(dynamic, bool): if dynamic: dynamic = 0 else: dynamic = end + 1 - start # start : index of first predicted value # dynamic : offset to first dynamically predicted value # -> if dynamic == 0, only dynamic simulations if dynamic == 0: start_smooth = None end_smooth = None nsmooth = 0 start_dynamic = start else: # dynamic simulations from start + dynamic start_smooth = start end_smooth = min(start + dynamic - 1, end) nsmooth = max(end_smooth - start_smooth + 1, 0) start_dynamic = start + dynamic # anchor for simulations is one before start_dynamic if start_dynamic == 0: anchor_dynamic = "start" else: anchor_dynamic = start_dynamic - 1 # end is last point in sample, out_of_sample gives number of # simulations out of sample end_dynamic = end + out_of_sample ndynamic = end_dynamic - start_dynamic + 1 return ( start, end, start_smooth, end_smooth, anchor_dynamic, start_dynamic, end_dynamic, nsmooth, ndynamic, index, )
[docs] def predict(self, start=None, end=None, dynamic=False, index=None): """ In-sample prediction and out-of-sample forecasting Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. dynamic : bool, int, str, or datetime, optional Integer offset relative to `start` at which to begin dynamic prediction. Can also be an absolute date string to parse or a datetime type (these are not interpreted as offsets). Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. index : pd.Index, optional Optionally an index to associate the predicted results to. If None, an attempt is made to create an index for the predicted results from the model's index or model's row labels. Returns ------- forecast : array_like or pd.Series. Array of out of in-sample predictions and / or out-of-sample forecasts. An (npredict,) array. If original data was a pd.Series or DataFrame, a pd.Series is returned. """ ( start, end, start_smooth, end_smooth, anchor_dynamic, _, end_dynamic, nsmooth, ndynamic, index, ) = self._handle_prediction_index(start, dynamic, end, index) y = np.empty(nsmooth + ndynamic) # In sample nondynamic prediction: smoothing if nsmooth > 0: y[0:nsmooth] = self.fittedvalues[start_smooth : end_smooth + 1] # Out of sample/dynamic prediction: forecast if ndynamic > 0: y[nsmooth:] = self._forecast(ndynamic, anchor_dynamic) # when we are doing out of sample only prediction, start > end + 1, and # we only want to output beginning at start if start > end + 1: ndiscard = start - (end + 1) y = y[ndiscard:] # Wrap data / squeeze where appropriate return self.model._wrap_data(y, start, end_dynamic)
[docs] def get_prediction( self, start=None, end=None, dynamic=False, index=None, method=None, simulate_repetitions=1000, **simulate_kwargs, ): """ Calculates mean prediction and prediction intervals. Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. dynamic : bool, int, str, or datetime, optional Integer offset relative to `start` at which to begin dynamic prediction. Can also be an absolute date string to parse or a datetime type (these are not interpreted as offsets). Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. index : pd.Index, optional Optionally an index to associate the predicted results to. If None, an attempt is made to create an index for the predicted results from the model's index or model's row labels. method : str or None, optional Method to use for calculating prediction intervals. 'exact' (default, if available) or 'simulated'. simulate_repetitions : int, optional Number of simulation repetitions for calculating prediction intervals when ``method='simulated'``. Default is 1000. **simulate_kwargs : Additional arguments passed to the ``simulate`` method. Returns ------- PredictionResults Predicted mean values and prediction intervals """ return PredictionResultsWrapper( PredictionResults( self, start, end, dynamic, index, method, simulate_repetitions, **simulate_kwargs, ) )
[docs] def summary(self, alpha=0.05, start=None): """ Summarize the fitted model Parameters ---------- alpha : float, optional Significance level for the confidence intervals. Default is 0.05. start : int, optional Integer of the start observation. Default is 0. Returns ------- summary : Summary instance This holds the summary table and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary """ model_name = f"ETS({self.short_name})" summary = super().summary( alpha=alpha, start=start, title="ETS Results", model_name=model_name, ) if self.model.initialization_method != "estimated": params = np.array(self.initial_state) if params.ndim > 1: params = params[0] names = self.model.initial_state_names param_header = [ "initialization method: %s" % self.model.initialization_method ] params_stubs = names params_data = [ [forg(params[i], prec=4)] for i in range(len(params)) ] initial_state_table = SimpleTable( params_data, param_header, params_stubs, txt_fmt=fmt_params ) summary.tables.insert(-1, initial_state_table) return summary
class ETSResultsWrapper(wrap.ResultsWrapper): _attrs = { "fittedvalues": "rows", "level": "rows", "resid": "rows", "season": "rows", "slope": "rows", } _wrap_attrs = wrap.union_dicts( tsbase.TimeSeriesResultsWrapper._wrap_attrs, _attrs ) _methods = {"predict": "dates", "forecast": "dates"} _wrap_methods = wrap.union_dicts( tsbase.TimeSeriesResultsWrapper._wrap_methods, _methods ) wrap.populate_wrapper(ETSResultsWrapper, ETSResults) class PredictionResults: """ ETS mean prediction and prediction intervals Parameters ---------- results : ETSResults Model estimation results. start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, i.e., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, i.e., the last forecast is end. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. dynamic : bool, int, str, or datetime, optional Integer offset relative to `start` at which to begin dynamic prediction. Can also be an absolute date string to parse or a datetime type (these are not interpreted as offsets). Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. index : pd.Index, optional Optionally an index to associate the predicted results to. If None, an attempt is made to create an index for the predicted results from the model's index or model's row labels. method : str or None, optional Method to use for calculating prediction intervals. 'exact' (default, if available) or 'simulated'. simulate_repetitions : int, optional Number of simulation repetitions for calculating prediction intervals. Default is 1000. **simulate_kwargs : Additional arguments passed to the ``simulate`` method. """ def __init__( self, results, start=None, end=None, dynamic=False, index=None, method=None, simulate_repetitions=1000, **simulate_kwargs, ): self.use_pandas = results.model.use_pandas if method is None: exact_available = ["ANN", "AAN", "AAdN", "ANA", "AAA", "AAdA"] if results.model.short_name in exact_available: method = "exact" else: method = "simulated" self.method = method ( start, end, start_smooth, _, anchor_dynamic, start_dynamic, end_dynamic, nsmooth, ndynamic, index, ) = results._handle_prediction_index(start, dynamic, end, index) self.predicted_mean = results.predict( start=start, end=end_dynamic, dynamic=dynamic, index=index ) self.row_labels = self.predicted_mean.index self.endog = np.empty(nsmooth + ndynamic) * np.nan if nsmooth > 0: self.endog[0: (end - start + 1)] = results.data.endog[ start: (end + 1) ] self.model = Bunch( data=results.model.data.__class__( endog=self.endog, predict_dates=self.row_labels ) ) if self.method == "simulated": sim_results = [] # first, perform "non-dynamic" simulations, i.e. simulations of # only one step, based on the previous step if nsmooth > 1: if start_smooth == 0: anchor = "start" else: anchor = start_smooth - 1 for i in range(nsmooth): sim_results.append( results.simulate( 1, anchor=anchor, repetitions=simulate_repetitions, **simulate_kwargs, ) ) # anchor anchor = start_smooth + i if ndynamic: sim_results.append( results.simulate( ndynamic, anchor=anchor_dynamic, repetitions=simulate_repetitions, **simulate_kwargs, ) ) if sim_results and isinstance(sim_results[0], pd.DataFrame): self.simulation_results = pd.concat(sim_results, axis=0) else: self.simulation_results = np.concatenate(sim_results, axis=0) self.forecast_variance = self.simulation_results.var(1) else: # method == 'exact' steps = np.ones(ndynamic + nsmooth) if ndynamic > 0: steps[ (start_dynamic - min(start_dynamic, start)): ] = range(1, ndynamic + 1) # when we are doing out of sample only prediction, # start > end + 1, and # we only want to output beginning at start if start > end + 1: ndiscard = start - (end + 1) steps = steps[ndiscard:] self.forecast_variance = ( results.mse * results._relative_forecast_variance(steps) ) @property def var_pred_mean(self): """The variance of the predicted mean""" return self.forecast_variance def pred_int(self, alpha=0.05): """ Calculates prediction intervals by performing multiple simulations. Parameters ---------- alpha : float, optional The significance level for the prediction interval. Default is 0.05, that is, a 95% prediction interval. """ if self.method == "simulated": simulated_upper_pi = np.quantile( self.simulation_results, 1 - alpha / 2, axis=1 ) simulated_lower_pi = np.quantile( self.simulation_results, alpha / 2, axis=1 ) pred_int = np.vstack((simulated_lower_pi, simulated_upper_pi)).T else: q = norm.ppf(1 - alpha / 2) half_interval_size = q * np.sqrt(self.forecast_variance) pred_int = np.vstack( ( self.predicted_mean - half_interval_size, self.predicted_mean + half_interval_size, ) ).T if self.use_pandas: pred_int = pd.DataFrame(pred_int, index=self.row_labels) names = [ f"lower PI (alpha={alpha:f})", f"upper PI (alpha={alpha:f})", ] pred_int.columns = names return pred_int def summary_frame(self, endog=0, alpha=0.05): pred_int = np.asarray(self.pred_int(alpha=alpha)) to_include = {} to_include["mean"] = self.predicted_mean if self.method == "simulated": to_include["mean_numerical"] = np.mean( self.simulation_results, axis=1 ) to_include["pi_lower"] = pred_int[:, 0] to_include["pi_upper"] = pred_int[:, 1] res = pd.DataFrame( to_include, index=self.row_labels, columns=list(to_include.keys()) ) return res class PredictionResultsWrapper(wrap.ResultsWrapper): _attrs = { "predicted_mean": "dates", "simulation_results": "dates", "endog": "dates", } _wrap_attrs = wrap.union_dicts(_attrs) _methods = {} _wrap_methods = wrap.union_dicts(_methods) wrap.populate_wrapper(PredictionResultsWrapper, PredictionResults) # noqa:E305