statsmodels.genmod.generalized_estimating_equations.NominalGEE.fit_regularized¶
- NominalGEE.fit_regularized(pen_wt, scad_param=3.7, maxiter=100, ddof_scale=None, update_assoc=5, ctol=1e-05, ztol=0.001, eps=1e-06, scale=None)¶
Regularized estimation for GEE.
- Parameters:
- pen_wt
float
The penalty weight (a non-negative scalar).
- scad_param
float
Non-negative scalar determining the shape of the Scad penalty.
- maxiter
int
The maximum number of iterations.
- ddof_scale
int
Value to subtract from nobs when calculating the denominator degrees of freedom for t-statistics, defaults to the number of columns in exog.
- update_assoc
int
The dependence parameters are updated every update_assoc iterations of the mean structure parameter updates.
- ctol
float
Convergence criterion, default is one order of magnitude smaller than proposed in section 3.1 of Wang et al.
- ztol
float
Coefficients smaller than this value are treated as being zero, default is based on section 5 of Wang et al.
- epsnon-negative scalar
Numerical constant, see section 3.2 of Wang et al.
- scale
float
orstr
If a float, this value is used as the scale parameter. If “X2”, the scale parameter is always estimated using Pearson’s chi-square method (e.g. as in a quasi-Poisson analysis). If None, the default approach for the family is used to estimate the scale parameter.
- pen_wt
- Returns:
GEEResults
instance.Note
that
not
all
methods
of
the
results
class
make
sense
when
the
model
has
been
fit
with
regularization.
Notes
This implementation assumes that the link is canonical.
References
Wang L, Zhou J, Qu A. (2012). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics. 2012 Jun;68(2):353-60. doi: 10.1111/j.1541-0420.2011.01678.x. https://www.ncbi.nlm.nih.gov/pubmed/21955051 http://users.stat.umn.edu/~wangx346/research/GEE_selection.pdf