statsmodels.tsa.forecasting.theta.ThetaModel.fit¶
- ThetaModel.fit(use_mle=False, disp=False)[source]¶
Estimate model parameters.
- Parameters:
- Returns:
ThetaModelResult
Model results and forecasting
Notes
When using MLE, the parameters are estimated from the ARIMA(0,1,1)
\[X_t = X_{t-1} + b_0 + (\alpha-1)\epsilon_{t-1} + \epsilon_t\]When estimating the model using 2-step estimation, the model parameters are estimated using the OLS regression
\[X_t = a_0 + b_0 (t-1) + \eta_t\]and the SES
\[\tilde{X}_{t+1} = \alpha X_{t} + (1-\alpha)\tilde{X}_{t}\]