statsmodels.emplike.descriptive.DescStatUV¶
-
class
statsmodels.emplike.descriptive.
DescStatUV
(endog)[source]¶ A class to compute confidence intervals and hypothesis tests involving mean, variance, kurtosis and skewness of a univariate random variable.
Parameters: endog : 1darray
Data to be analyzed
Attributes
endog (1darray) Data to be analyzed nobs (float) Number of observations Methods
ci_kurt
([sig, upper_bound, lower_bound])Returns the confidence interval for kurtosis. ci_mean
([sig, method, epsilon, gamma_low, ...])Returns the confidence interval for the mean. ci_skew
([sig, upper_bound, lower_bound])Returns the confidence interval for skewness. ci_var
([lower_bound, upper_bound, sig])Returns the confidence interval for the variance. plot_contour
(mu_low, mu_high, var_low, ...)Returns a plot of the confidence region for a univariate mean and variance. test_joint_skew_kurt
(skew0, kurt0[, ...])Returns - 2 x log-likelihood and the p-value for the joint test_kurt
(kurt0[, return_weights])Returns -2 x log-likelihood and the p-value for the hypothesized kurtosis. test_mean
(mu0[, return_weights])Returns - 2 x log-likelihood ratio, p-value and weights for a hypothesis test of the mean. test_skew
(skew0[, return_weights])Returns -2 x log-likelihood and p-value for the hypothesized skewness. test_var
(sig2_0[, return_weights])Returns -2 x log-likelihoog ratio and the p-value for the Methods
ci_kurt
([sig, upper_bound, lower_bound])Returns the confidence interval for kurtosis. ci_mean
([sig, method, epsilon, gamma_low, ...])Returns the confidence interval for the mean. ci_skew
([sig, upper_bound, lower_bound])Returns the confidence interval for skewness. ci_var
([lower_bound, upper_bound, sig])Returns the confidence interval for the variance. plot_contour
(mu_low, mu_high, var_low, ...)Returns a plot of the confidence region for a univariate mean and variance. test_joint_skew_kurt
(skew0, kurt0[, ...])Returns - 2 x log-likelihood and the p-value for the joint test_kurt
(kurt0[, return_weights])Returns -2 x log-likelihood and the p-value for the hypothesized kurtosis. test_mean
(mu0[, return_weights])Returns - 2 x log-likelihood ratio, p-value and weights for a hypothesis test of the mean. test_skew
(skew0[, return_weights])Returns -2 x log-likelihood and p-value for the hypothesized skewness. test_var
(sig2_0[, return_weights])Returns -2 x log-likelihoog ratio and the p-value for the